Given:
Magnetic field \( B = \SI{2}{\tesla} \)
Length of the rod \( L = \SI{2}{\metre} \)
Frequency of rotation \( f = \SI{60}{\rev\per\second} \)
The angular velocity \( \omega \) is given by:
\[
\omega = 2 \pi f
\]
Substituting the value of \( f = 60 \, \text{rev/s} \):
\[
\omega = 2 \pi \times 60 = 120 \pi \, \text{rad/s}
\]
The induced e.m.f. \( \mathcal{E} \) is given by:
\[
\mathcal{E} = \frac{1}{2} B L^2 \omega
\]
Substituting the known values:
\[
\mathcal{E} = \frac{1}{2} \times 2 \times (2)^2 \times (2 \pi \times 60)
\]
\[
\mathcal{E} = \frac{1}{2} \times 2 \times 4 \times 120 \pi
\]
\[
\mathcal{E} = 480 \pi \, \text{V}
\]
Finally, calculating the value of \( \mathcal{E} \) using \( \pi \approx 3.1416 \):
\[
\mathcal{E} = 480 \times 3.1416 \, \text{V} \approx 1.51 \times 10^3 \, \text{V}
\]
\boxed{\mathcal{E} = 1.51 \times 10^3 \, \text{V}}