The relationship between the charges and radii is given by:
\[ \frac{1}{4 \pi \epsilon_0} \cdot \frac{Q_1'}{R} = \frac{1}{4 \pi \epsilon_0} \cdot \frac{Q_2'}{2R} \]
Simplifying, we find:
\[ Q_2' = 2Q_1' \]
Using the charge conservation equation:
\[ Q_1' + Q_2' = Q_1 + Q_2 \]
Substitute \(Q_2' = 2Q_1'\):
\[ Q_1' + 2Q_1' = 20 \pi R^2 \sigma \]
\[ 3Q_1' = 20 \pi R^2 \sigma \]
\[ Q_1' = \frac{20 \pi R^2 \sigma}{3} \]
Substitute \(Q_2' = 2Q_1'\):
\[ Q_2' = \frac{40 \pi R^2 \sigma}{3} \]
The surface charge densities are related by:
\[ \sigma' = \frac{Q_2'}{4 \pi (2R)^2} \]
\[ \sigma' = \frac{\frac{40 \pi R^2 \sigma}{3}}{16 \pi R^2} \]
\[ \sigma' = \frac{40}{3} \cdot \frac{1}{16} \cdot \sigma \]
\[ \sigma' = \frac{5}{6} \cdot \sigma \]
The force on a current-carrying conductor in a magnetic field is given by:
\[ F_m = ILB \]
Equating with gravitational force \(F_m = mg\):
\[ ILB = mg \]
Substitute \(I = \frac{V}{R}\):
\[ \left(\frac{V}{R}\right)LB = mg \]
Solve for \(V\):
\[ V = \frac{mgR}{LB} \]
Substitute the given values \(m = 1 \times 10^{-3} \ \text{kg}\), \(g = 10 \ \text{m/s}^2\), \(R = 10 \ \Omega\), \(L = 0.1 \ \text{m}\), and \(B = 10^{-3} \ \text{T}\):
\[ V = \frac{(1 \times 10^{-3})(10)(10)}{(0.1)(10^{-3})} \]
\[ V = 10 \ \text{V} \]
Voltage \(V = 10 \ \text{V}\)
Conductor wire ABCDE with each arm 10 cm in length is placed in magnetic field of $\frac{1}{\sqrt{2}}$ Tesla, perpendicular to its plane. When conductor is pulled towards right with constant velocity of $10 \mathrm{~cm} / \mathrm{s}$, induced emf between points A and E is _______ mV.}
The total number of structural isomers possible for the substituted benzene derivatives with the molecular formula $C_7H_{12}$ is __
Four capacitors each of capacitance $16\,\mu F$ are connected as shown in the figure. The capacitance between points A and B is __ (in $\mu F$)
Among, Sc, Mn, Co and Cu, identify the element with highest enthalpy of atomisation. The spin only magnetic moment value of that element in its +2 oxidation state is _______BM (in nearest integer).
X g of nitrobenzene on nitration gave 4.2 g of m-dinitrobenzene. X =_____ g. (nearest integer) [Given : molar mass (in g mol\(^{-1}\)) C : 12, H : 1, O : 16, N : 14]
A perfect gas (0.1 mol) having \( \bar{C}_V = 1.50 \) R (independent of temperature) undergoes the above transformation from point 1 to point 4. If each step is reversible, the total work done (w) while going from point 1 to point 4 is ____ J (nearest integer) [Given : R = 0.082 L atm K\(^{-1}\)]
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where