For a point inside the wire (\(r<a\)), the magnetic field is given by:
\[B_1 \times 2\pi \frac{a}{2} = \mu_0 \frac{I}{4} \implies B_1 = \frac{\mu_0 I}{4\pi a}.\]
For a point outside the wire (\(r>a\)), the magnetic field is:
\[B_2 \times 2\pi \times 2a = \mu_0 I \implies B_2 = \frac{\mu_0 I}{4\pi a}.\]
The ratio of magnetic fields:
\[\frac{B_1}{B_2} = \frac{\frac{\mu_0 I}{4\pi a}}{\frac{\mu_0 I}{4\pi a}} = 1 : 1.\]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: