For a point inside the wire (\(r<a\)), the magnetic field is given by:
\[B_1 \times 2\pi \frac{a}{2} = \mu_0 \frac{I}{4} \implies B_1 = \frac{\mu_0 I}{4\pi a}.\]
For a point outside the wire (\(r>a\)), the magnetic field is:
\[B_2 \times 2\pi \times 2a = \mu_0 I \implies B_2 = \frac{\mu_0 I}{4\pi a}.\]
The ratio of magnetic fields:
\[\frac{B_1}{B_2} = \frac{\frac{\mu_0 I}{4\pi a}}{\frac{\mu_0 I}{4\pi a}} = 1 : 1.\]
The relationship between the magnetic susceptibility $ \chi $ and the magnetic permeability $ \mu $ is given by:
$ \mu_0 $ is the permeability of free space and $ \mu_r $ is relative permeability.
Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : If oxygen ion (O\(^{-2}\)) and Hydrogen ion (H\(^{+}\)) enter normal to the magnetic field with equal momentum, then the path of O\(^{-2}\) ion has a smaller curvature than that of H\(^{+}\).
Reason R : A proton with same linear momentum as an electron will form a path of smaller radius of curvature on entering a uniform magnetic field perpendicularly.
In the light of the above statements, choose the correct answer from the options given below
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
$\text{The fractional compression } \left( \frac{\Delta V}{V} \right) \text{ of water at the depth of } 2.5 \, \text{km below the sea level is } \_\_\_\_\_\_\_\_\_\_ \%. \text{ Given, the Bulk modulus of water } = 2 \times 10^9 \, \text{N m}^{-2}, \text{ density of water } = 10^3 \, \text{kg m}^{-3}, \text{ acceleration due to gravity } g = 10 \, \text{m s}^{-2}.$
Identify the number of structure/s from the following which can be correlated to D-glyceraldehyde.