For a point inside the wire (\(r<a\)), the magnetic field is given by:
\[B_1 \times 2\pi \frac{a}{2} = \mu_0 \frac{I}{4} \implies B_1 = \frac{\mu_0 I}{4\pi a}.\]
For a point outside the wire (\(r>a\)), the magnetic field is:
\[B_2 \times 2\pi \times 2a = \mu_0 I \implies B_2 = \frac{\mu_0 I}{4\pi a}.\]
The ratio of magnetic fields:
\[\frac{B_1}{B_2} = \frac{\frac{\mu_0 I}{4\pi a}}{\frac{\mu_0 I}{4\pi a}} = 1 : 1.\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: