Step 1: Calculate the number of combinations for Rohit and his friends. Rohit and his friends chose 2 vegetarian items from 16 and 3 non-vegetarian items from 9:
$\binom{16}{2} \times \binom{9}{3} = \frac{16 \times 15}{2} \times \frac{9 \times 8 \times 7}{6} = 120 \times 84 = 10,080.$
Step 2: Calculate the number of combinations for Bela and her friends. Let g be the number of items containing gluten. The gluten-free items are:
(16 + 9) − g = 25 − g.
Bela and her friends chose 2 vegetarian items and 1 non-vegetarian item from the gluten-free options:
$\binom{16 - g}{2} \times \binom{9 - g}{1}$
Step 3: Relate the two combinations. It is given that:
10,080 = 12 × $\left[ \binom{16 - g}{2} \times \binom{9 - g}{1} \right]$.
Simplify:
$\binom{16 - g}{2} \times \binom{9 - g}{1} = \frac{10,080}{12} = 840.$
Step 4: Solve for g. Expand the combinations:
$\frac{(16 - g)(15 - g)}{2} \times (9 - g) = 840.$
Simplify:
$\frac{(16 - g)(15 - g)(9 - g)}{2} = 840 \implies (16 - g)(15 - g)(9 - g) = 1,680.$
Testing values of g, we find g = 3 satisfies the equation.
Answer: 3
Match List-I with List-II
List-I | List-II |
---|---|
(A) \(^{8}P_{3} - ^{10}C_{3}\) | (I) 6 |
(B) \(^{8}P_{5}\) | (II) 21 |
(C) \(^{n}P_{4} = 360,\) then find \(n\). | (III) 216 |
(D) \(^{n}C_{2} = 210,\) find \(n\). | (IV) 6720 |
Choose the correct answer from the options given below:
Match the following authors with their respective works.
Authors | Books |
---|---|
1. Andy Weir | A. Dune |
2. Cixin Liu | B. The Time Machine |
3. Stephen Hawking | C. The Brief History of Time |
4. HG Wells | D. The Martian |
5. Frank Herbert | E. The Three Body Problem |