
To find the ratio of masses \( m_1 \) and \( m_2 \), we can use the concepts of mechanics involving pulleys and blocks.
Given:
Consider the forces acting on each mass:
Setting these two expressions for tension \( T \) equal gives:
\(m_1g - m_1a = m_2g + m_2a\)
Substituting \( a = \frac{g}{8} \):
\(m_1g - m_1\left(\frac{g}{8}\right) = m_2g + m_2\left(\frac{g}{8}\right)\)
Simplifying further:
\(m_1g\left(1 - \frac{1}{8}\right) = m_2g\left(1 + \frac{1}{8}\right)\)
\(\frac{7m_1g}{8} = \frac{9m_2g}{8}\)
Cancelling \( g \) and simplifying gives:
\(7m_1 = 9m_2\)
Thus, the ratio of the masses is:
\(\frac{m_1}{m_2} = \frac{9}{7}\)
Therefore, the correct answer is \(\frac{9}{7}\).
The acceleration \( a \) of the system is given by:
\[ a = \frac{(m_1 - m_2)g}{m_1 + m_2} = \frac{g}{8}. \]This implies:
\[ 8m_1 - 8m_2 = m_1 + m_2. \]Rearrange terms:
\[ 7m_1 = 9m_2. \]Thus, the ratio of \( m_1 \) to \( m_2 \) is:
\[ \frac{m_1}{m_2} = \frac{9}{7}. \]Therefore, the answer is:
\[ \frac{9}{7}. \]Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is 
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: