The acceleration \( a \) of the system is given by:
\[ a = \frac{(m_1 - m_2)g}{m_1 + m_2} = \frac{g}{8}. \]This implies:
\[ 8m_1 - 8m_2 = m_1 + m_2. \]Rearrange terms:
\[ 7m_1 = 9m_2. \]Thus, the ratio of \( m_1 \) to \( m_2 \) is:
\[ \frac{m_1}{m_2} = \frac{9}{7}. \]Therefore, the answer is:
\[ \frac{9}{7}. \]If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: