
To find the ratio of masses \( m_1 \) and \( m_2 \), we can use the concepts of mechanics involving pulleys and blocks.
Given:
Consider the forces acting on each mass:
Setting these two expressions for tension \( T \) equal gives:
\(m_1g - m_1a = m_2g + m_2a\)
Substituting \( a = \frac{g}{8} \):
\(m_1g - m_1\left(\frac{g}{8}\right) = m_2g + m_2\left(\frac{g}{8}\right)\)
Simplifying further:
\(m_1g\left(1 - \frac{1}{8}\right) = m_2g\left(1 + \frac{1}{8}\right)\)
\(\frac{7m_1g}{8} = \frac{9m_2g}{8}\)
Cancelling \( g \) and simplifying gives:
\(7m_1 = 9m_2\)
Thus, the ratio of the masses is:
\(\frac{m_1}{m_2} = \frac{9}{7}\)
Therefore, the correct answer is \(\frac{9}{7}\).
The acceleration \( a \) of the system is given by:
\[ a = \frac{(m_1 - m_2)g}{m_1 + m_2} = \frac{g}{8}. \]This implies:
\[ 8m_1 - 8m_2 = m_1 + m_2. \]Rearrange terms:
\[ 7m_1 = 9m_2. \]Thus, the ratio of \( m_1 \) to \( m_2 \) is:
\[ \frac{m_1}{m_2} = \frac{9}{7}. \]Therefore, the answer is:
\[ \frac{9}{7}. \]Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
