A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 year.
Age (in years) | Number of policy holders |
|---|---|
Below 20 | 2 |
Below 25 | 6 |
Below 30 | 24 |
Below 35 | 45 |
Below 40 | 78 |
Below 45 | 89 |
Below 50 | 92 |
Below 55 | 98 |
Below 60 | 100 |
Here, class width is not the same. There is no requirement of adjusting the frequencies according to class intervals. The given frequency table is of less than type represented with upper class limits. The policies were given only to persons with age 18 years onwards but less than 60 years. Therefore, class intervals with their respective cumulative frequency can be defined as below.
The cumulative frequencies with their respective class intervals are as follows.
Age (in years) | Frequency (f\(_i\)) | Number of policy holders ( |
|---|---|---|
18 - 20 | 2 | 2 |
20 - 25 | 6 - 2 = 4 | 6 |
25 - 30 | 24 - 6 = 18 | 24 |
30 - 35 | 45 - 24 = 21 | 45 |
35 - 40 | 78 - 45 = 33 | 78 |
40 - 45 | 89 - 78 = 11 | 89 |
45 - 50 | 92 - 89 = 3 | 92 |
50 - 55 | 98 - 92 = 6 | 98 |
55 - 56 | 100 - 98 = 2 | 100 |
From the table, it can be observed that n = 100.
Cumulative frequency just greater \(\frac{n}2 ( i.e., \frac{100}2 = 50)\) than is 78, belonging to class interval 35 - 40.
Median class = 35 - 40
Lower limit (\(l\)) of median class = 35
Frequency (\(f\)) of median class = 33
Cumulative frequency (\(cf\)) of median class = 45
Class size (\(h\)) = 5
Median = \(l + (\frac{\frac{n}2 - cf}f \times h)\)
Median = \(35 + (\frac{50 - 45}{33} \times 5)\)
Median = 35 + \(\frac{25}{33}\)
Median = 35.76
Therefore, median age is 35.76 years.
To find the class mark (xi) for each interval, the following relation is used.
Class mark \((x_i)\) = \(\frac {\text{Upper \,limit + Lower \,limit}}{2}\)
Taking 11.5 as assumed mean (a), \(d_i\), \(u_i\), and \(f_iu_i\) are calculated according to step deviation method as follows.
Number of letters | Frequency (f\(_i\)) | \(\bf{x_i}\) | \(\bf{d_i = x_i -11.5}\) | \(\bf{u_i = \frac{d_i}{3}}\) | \(\bf{f_iu_i}\) |
|---|---|---|---|---|---|
1 - 4 | 6 | 2.5 | -9 | -3 | -18 |
4 - 7 | 30 | 5.5 | -6 | -2 | -60 |
7 - 10 | 40 | 8.5 | -3 | -1 | -40 |
10 - 13 | 16 | 11.5 | 0 | 0 | 0 |
13 - 16 | 4 | 14.5 | 3 | 1 | 4 |
16 - 19 | 4 | 17.5 | 6 | 2 | 8 |
Total | 100 |
|
|
| -106 |
From the table, it can be observed that
\(\sum f_i = 100\)
\(\sum f_iu_i = -106\)
Mean, \(\overset{-}{x} = a + (\frac{\sum f_iu_i}{\sum f_i})\times h\)
\(\overset{-}{x}\) = \(11.5 + (\frac{-106 }{100})\times 3\)
\(\overset{-}{x}\) = 11.5 - 3.18
Mean, \(\overset{-}{x}\) = 8.32
The data in the given table can be written as
Number of letters | Frequency (f\(_i\)) |
|---|---|
1 - 4 | 6 |
4 - 7 | 30 |
7 - 10 | 40 |
10 - 13 | 16 |
13 - 16 | 4 |
16 - 19 | 4 |
Total | 100 |
From the data given above, it can be observed that the maximum class frequency is 40, belonging to class interval 7 - 10.
Therefore, modal class = 7 - 10
Lower limit (\(l\)) of modal class = 7
Frequency (\(f_1\)) of modal class = 40
Frequency (\(f_0\)) of class preceding the modal class = 30
Frequency (\(f_2\)) of class succeeding the modal class = 16
Class size (\(h\)) = 3
Mode = \(l\) + \((\frac{f_1 - f_0 }{2f_1 - f_0 - f_2)} \times h\)
Mode = \(7 + (\frac{40 - 30 }{ 2(40) - 30 - 16}) \times3\)
Mode =\(7+ [\frac{10}{34}] \times 3\)
Mode = \(7 +( \frac{ 30}{ 34})\)
Mode = 7 + 0.88
Mode = 7.88
Therefore, median number and mean number of letters in surnames is 8.05 and 8.32 respectively while modal size of surnames is 7.88.
The following data shows the number of family members living in different bungalows of a locality:
| Number of Members | 0тИТ2 | 2тИТ4 | 4тИТ6 | 6тИТ8 | 8тИТ10 | Total |
|---|---|---|---|---|---|---|
| Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Median class of the following frequency distribution will be:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 0-10 & 7 \\ \hline 10-20 & 12 \\ \hline 20-30 & 18 \\ \hline 30-40 & 15 \\ \hline 40-50 & 10 \\ \hline 50-60 & 3 \\ \hline \end{array} \]
The median class of the following frequency distribution will be:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-Interval} & \text{$0$--$10$} & \text{$10$--$20$} & \text{$20$--$30$} & \text{$30$--$40$} & \text{$40$--$50$} \\ \hline \text{Frequency} & \text{$7$} & \text{$8$} & \text{$15$} & \text{$10$} & \text{$5$} \\ \hline \end{array}\]
рдЖрдк рдЕрджрд┐рддрд┐ / рдЖрджрд┐рддреНрдп рд╣реИрдВред рдЖрдкрдХреА рджрд╛рджреАрдЬреА рдХреЛ рдЦреЗрд▓реЛрдВ рдореЗрдВ рдЕрддреНрдпрдзрд┐рдХ рд░реБрдЪрд┐ рд╣реИред рдУрд▓рдВрдкрд┐рдХ рдЦреЗрд▓-2024 рдореЗрдВ рднрд╛рд░рдд рдХреЗ рдкреНрд░рджрд░реНрд╢рди рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА рджреЗрддреЗ рд╣реБрдП рд▓рдЧрднрдЧ 100 рд╢рдмреНрджреЛрдВ рдореЗрдВ рдкрддреНрд░ рд▓рд┐рдЦрд┐рдПред