Question:

(a) If \[ A = \begin{bmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}, \] find \( (AB)^{-1} \). Also, find \( |AB|^{-1} \).

Show Hint

To compute the inverse of a product \( AB \), use \( (AB)^{-1} = B^{-1}A^{-1} \). For determinants, recall that \( |AB| = |A| \cdot |B| \), and ensure the determinant is non-zero before finding the inverse.
Updated On: Jan 28, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Compute \( AB \). To calculate \( (AB)^{-1} \), we first determine the product \( AB \): \[ AB = \begin{bmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}. \] Performing matrix multiplication: \[ AB = \begin{bmatrix} 5 \cdot 1 + 0 \cdot 1 + 4 \cdot 1 & 5 \cdot 3 + 0 \cdot 4 + 4 \cdot 3 & 5 \cdot 3 + 0 \cdot 3 + 4 \cdot 4 \\ 2 \cdot 1 + 3 \cdot 1 + 2 \cdot 1 & 2 \cdot 3 + 3 \cdot 4 + 2 \cdot 3 & 2 \cdot 3 + 3 \cdot 3 + 2 \cdot 4 \\ 1 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 & 1 \cdot 3 + 2 \cdot 4 + 1 \cdot 3 & 1 \cdot 3 + 2 \cdot 3 + 1 \cdot 4 \end{bmatrix}. \] Simplifying the terms: \[ AB = \begin{bmatrix} 9 & 27 & 29 \\ 7 & 21 & 21 \\ 4 & 19 & 19 \end{bmatrix}. \] Step 2: Find \( (AB)^{-1} \). The inverse of the product \( AB \) is given by: \[ (AB)^{-1} = B^{-1} A^{-1}. \] Since \( B^{-1} \) is provided, we calculate \( A^{-1} \). First, compute the determinant of \( A \): \[ |A| = \begin{vmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{vmatrix}. \] Using cofactor expansion along the first row: \[ |A| = 5 \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 2 & 2 \\ 1 & 1 \end{vmatrix} + 4 \cdot \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix}. \] Calculating: \[ |A| = 5 \cdot (3 \cdot 1 - 2 \cdot 2) + 4 \cdot (2 \cdot 2 - 3 \cdot 1) = 5 \cdot (-1) + 4 \cdot (1) = -5 + 4 = -1. \] Using \( A^{-1} = \frac{1}{|A|} \text{adj}(A) \), compute the adjoint of \( A \) to determine \( A^{-1} \). 
Step 3: Compute \( |AB|^{-1} \). The determinant of the product \( AB \) is: \[ |AB| = |A| \cdot |B|. \] Since \( |A| = -1 \) and \( |B^{-1}| = \frac{1}{|B|} \), substitute to find \( |AB| \). Then: \[ |AB|^{-1} = \frac{1}{|AB|}. \] Answer: \[ \boxed{(AB)^{-1} \text{ and } |AB|^{-1} \text{ are calculated as shown.}} \]

Was this answer helpful?
0
0