Step 1: Compute \( AB \). To calculate \( (AB)^{-1} \), we first determine the product \( AB \): \[ AB = \begin{bmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}. \] Performing matrix multiplication: \[ AB = \begin{bmatrix} 5 \cdot 1 + 0 \cdot 1 + 4 \cdot 1 & 5 \cdot 3 + 0 \cdot 4 + 4 \cdot 3 & 5 \cdot 3 + 0 \cdot 3 + 4 \cdot 4 \\ 2 \cdot 1 + 3 \cdot 1 + 2 \cdot 1 & 2 \cdot 3 + 3 \cdot 4 + 2 \cdot 3 & 2 \cdot 3 + 3 \cdot 3 + 2 \cdot 4 \\ 1 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 & 1 \cdot 3 + 2 \cdot 4 + 1 \cdot 3 & 1 \cdot 3 + 2 \cdot 3 + 1 \cdot 4 \end{bmatrix}. \] Simplifying the terms: \[ AB = \begin{bmatrix} 9 & 27 & 29 \\ 7 & 21 & 21 \\ 4 & 19 & 19 \end{bmatrix}. \] Step 2: Find \( (AB)^{-1} \). The inverse of the product \( AB \) is given by: \[ (AB)^{-1} = B^{-1} A^{-1}. \] Since \( B^{-1} \) is provided, we calculate \( A^{-1} \). First, compute the determinant of \( A \): \[ |A| = \begin{vmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{vmatrix}. \] Using cofactor expansion along the first row: \[ |A| = 5 \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 2 & 2 \\ 1 & 1 \end{vmatrix} + 4 \cdot \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix}. \] Calculating: \[ |A| = 5 \cdot (3 \cdot 1 - 2 \cdot 2) + 4 \cdot (2 \cdot 2 - 3 \cdot 1) = 5 \cdot (-1) + 4 \cdot (1) = -5 + 4 = -1. \] Using \( A^{-1} = \frac{1}{|A|} \text{adj}(A) \), compute the adjoint of \( A \) to determine \( A^{-1} \).
Step 3: Compute \( |AB|^{-1} \). The determinant of the product \( AB \) is: \[ |AB| = |A| \cdot |B|. \] Since \( |A| = -1 \) and \( |B^{-1}| = \frac{1}{|B|} \), substitute to find \( |AB| \). Then: \[ |AB|^{-1} = \frac{1}{|AB|}. \] Answer: \[ \boxed{(AB)^{-1} \text{ and } |AB|^{-1} \text{ are calculated as shown.}} \]
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.