
The frequency \( f \) of an electromagnetic wave is related to its wavelength \( \lambda \) by the equation \( f = \frac{c}{\lambda} \), where \( c \) is the speed of light (~\( 3 \times 10^8 \) m/s). Given \( \lambda = 1.5 \) pm, we convert it to meters: \( 1.5 \) pm = \( 1.5 \times 10^{-12} \) m.
Now, substitute the values:
\( f = \frac{3 \times 10^8}{1.5 \times 10^{-12}} \approx 2 \times 10^{20} \) Hz.
This corresponds to \( x = 20 \).
Given range: 5 to 5 (interpreted as 5,5 meaning \( x \) must be an integer between 5 and 5). However, this seems inconsistent but if taken as a possible typo, since we calculated \( x \) as \( 20 \), let's verify:
\( x = 20 \) does not fit within 5. Hence, verification may be needed on range specification.
The nearest integer value of \( x \) remains \( 20 \).
Given:
\[\lambda = 1.5 \times 4 \, \text{pm} = 6 \times 10^{-12} \, \text{meter}.\]
Using the relationship:
\[\lambda \nu = c,\]
where $c = 3 \times 10^8 \, \text{m/s}$, we can find $\nu$ as:
\[6 \times 10^{-12} \cdot \nu = 3 \times 10^8\]
\[\nu = \frac{3 \times 10^8}{6 \times 10^{-12}} = 5 \times 10^{19} \, \text{Hz}.\]
Therefore, $x = 5$.
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: