Given:
\[\lambda = 1.5 \times 4 \, \text{pm} = 6 \times 10^{-12} \, \text{meter}.\]
Using the relationship:
\[\lambda \nu = c,\]
where $c = 3 \times 10^8 \, \text{m/s}$, we can find $\nu$ as:
\[6 \times 10^{-12} \cdot \nu = 3 \times 10^8\]
\[\nu = \frac{3 \times 10^8}{6 \times 10^{-12}} = 5 \times 10^{19} \, \text{Hz}.\]
Therefore, $x = 5$.
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)