Given:
\[\lambda = 1.5 \times 4 \, \text{pm} = 6 \times 10^{-12} \, \text{meter}.\]
Using the relationship:
\[\lambda \nu = c,\]
where $c = 3 \times 10^8 \, \text{m/s}$, we can find $\nu$ as:
\[6 \times 10^{-12} \cdot \nu = 3 \times 10^8\]
\[\nu = \frac{3 \times 10^8}{6 \times 10^{-12}} = 5 \times 10^{19} \, \text{Hz}.\]
Therefore, $x = 5$.
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: