Given:
\[\lambda = 1.5 \times 4 \, \text{pm} = 6 \times 10^{-12} \, \text{meter}.\]
Using the relationship:
\[\lambda \nu = c,\]
where $c = 3 \times 10^8 \, \text{m/s}$, we can find $\nu$ as:
\[6 \times 10^{-12} \cdot \nu = 3 \times 10^8\]
\[\nu = \frac{3 \times 10^8}{6 \times 10^{-12}} = 5 \times 10^{19} \, \text{Hz}.\]
Therefore, $x = 5$.
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: