The change in energy during the transition is given by:
\[ \Delta E = 13.6 \left( \frac{1}{2^2} - \frac{1}{3^2} \right) = 1.9 \, \text{eV} \]
The relationship between energy and wavelength is given by:
\[ \Delta E = \frac{hc}{\lambda} \]
Rearranging for \( \lambda \):
\[ \lambda = \frac{hc}{\Delta E} \]
To find the effect of recoil, consider the conservation of momentum:
\[ P_i = P_f \] \[ 0 = -mv + \frac{h}{\lambda'} \]
Solving for the velocity \( v \) of the recoiling atom:
\[ v = \frac{h}{m\lambda'} \]
The total energy change \( \Delta E' \) considering kinetic energy and emitted photon energy is given by:
\[ \Delta E' = \frac{1}{2} mv^2 + \frac{hc}{\lambda'} \]
Substituting for \( v \) and simplifying:
\[ \Delta E' = \frac{1}{2} \left( \frac{h}{m\lambda'} \right)^2 + \frac{hc}{\lambda'} \]
Using the energy conservation equation:
\[ \lambda'^2 \Delta E - hc\lambda' - \frac{h^2}{2m} = 0 \]
Solving this quadratic equation for \( \lambda' \):
\[ \lambda' = \frac{hc \pm \sqrt{h^2c^2 + 4\Delta E h^2 / 2m}}{2\Delta E} \]
Approximating for small changes:
\[ \frac{\lambda' - \lambda}{\lambda} \approx \frac{\Delta E}{2mc^2} \]
Substituting the given values:
\[ \frac{\lambda' - \lambda}{\lambda} = \frac{1.9 \times 1.6 \times 10^{-19}}{2 \times 1.67 \times 10^{-27} \times (3 \times 10^8)^2} \approx 10^{-7} \]
The percentage change in wavelength is approximately \( 10^{-7} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: