The change in energy during the transition is given by:
\[ \Delta E = 13.6 \left( \frac{1}{2^2} - \frac{1}{3^2} \right) = 1.9 \, \text{eV} \]
The relationship between energy and wavelength is given by:
\[ \Delta E = \frac{hc}{\lambda} \]
Rearranging for \( \lambda \):
\[ \lambda = \frac{hc}{\Delta E} \]
To find the effect of recoil, consider the conservation of momentum:
\[ P_i = P_f \] \[ 0 = -mv + \frac{h}{\lambda'} \]
Solving for the velocity \( v \) of the recoiling atom:
\[ v = \frac{h}{m\lambda'} \]
The total energy change \( \Delta E' \) considering kinetic energy and emitted photon energy is given by:
\[ \Delta E' = \frac{1}{2} mv^2 + \frac{hc}{\lambda'} \]
Substituting for \( v \) and simplifying:
\[ \Delta E' = \frac{1}{2} \left( \frac{h}{m\lambda'} \right)^2 + \frac{hc}{\lambda'} \]
Using the energy conservation equation:
\[ \lambda'^2 \Delta E - hc\lambda' - \frac{h^2}{2m} = 0 \]
Solving this quadratic equation for \( \lambda' \):
\[ \lambda' = \frac{hc \pm \sqrt{h^2c^2 + 4\Delta E h^2 / 2m}}{2\Delta E} \]
Approximating for small changes:
\[ \frac{\lambda' - \lambda}{\lambda} \approx \frac{\Delta E}{2mc^2} \]
Substituting the given values:
\[ \frac{\lambda' - \lambda}{\lambda} = \frac{1.9 \times 1.6 \times 10^{-19}}{2 \times 1.67 \times 10^{-27} \times (3 \times 10^8)^2} \approx 10^{-7} \]
The percentage change in wavelength is approximately \( 10^{-7} \).
An electron in the hydrogen atom initially in the fourth excited state makes a transition to \( n^{th} \) energy state by emitting a photon of energy 2.86 eV. The integer value of n will be 1cm.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: