The total internal energy U of a gas mixture is given by:
\( U = nC_{V}T. \)
For argon (a monatomic gas), \( C_{V, Ar} = \frac{3R}{2} \). For oxygen (a diatomic gas), \( C_{V, O_2} = \frac{5R}{2} \).
Therefore, the internal energy of the mixture is:
\( U = n_1C_{V, Ar}T + n_2C_{V, O_2}T. \)
Substitute \( n_1 = 8 \), \( n_2 = 6 \):
\( U = 8 \times \frac{3R}{2} \times T + 6 \times \frac{5R}{2} \times T = 27RT. \)
Thus, the answer is:
\( 27RT. \)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: