Given: Galvanometer resistance \( G \) Initial voltmeter range \( (0 - V) \) with series resistance \( R \) Desired voltmeter range \( (0 - \frac{V}{2}) \) The current \( I \) through the galvanometer for full-scale deflection is:
\[ I = \frac{V}{R + G} \] For the new range \( (0 - \frac{V}{2}) \), the current \( I \) should remain the same. Let the new series resistance be \( R' \). Therefore:
\[ I = \frac{\frac{V}{2}}{R' + G} \] Setting the currents equal:
\[ \frac{V}{R + G} = \frac{\frac{V}{2}}{R' + G} \] Simplify and solve for \( R' \):
\[ \frac{1}{R + G} = \frac{1}{2(R' + G)} \] \[ R + G = 2(R' + G) \] \[ R + G = 2R' + 2G \] \[ R - G = 2R' \] \[ R' = \frac{R - G}{2} \] Therefore, the required resistance is:
\[ \boxed{R' = \frac{R - G}{2}} \]

If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?