The torque \( \vec{\tau} \) is given by the cross product of the position vector \( \vec{r} \) and the force \( \vec{F} \):
\[
\vec{\tau} = \vec{r} \times \vec{F}
\]
The position vector \( \vec{r} \) from the origin to the point \( (2, -3) \) is:
\[
\vec{r} = (0 - 2) \hat{i} + (0 - (-3)) \hat{j} = -2 \hat{i} + 3 \hat{j}
\]
The force is given by:
\[
\vec{F} = -p \hat{k}
\]
Now, calculating the cross product:
\[
\vec{\tau} = (-2 \hat{i} + 3 \hat{j}) \times (-p \hat{k})
\]
Using the cross product identity:
\[
\vec{\tau} = (-2 \hat{i} + 3 \hat{j}) \times (-p \hat{k}) = -p(3 \hat{i} + 2 \hat{j})
\]
Given that the torque \( \vec{\tau} \) is \( P(a \hat{i} + b \hat{j}) \), comparing the coefficients, we get:
\[
a = 3 \quad \text{and} \quad b = 2
\]
Thus, the ratio \( \frac{a}{b} = \frac{3}{2} \).
We are given that the ratio is \( \frac{x}{2} \), so:
\[
\frac{3}{2} = \frac{x}{2}
\]
Solving for \( x \), we get:
\[
x = 3
\]
Thus, the value of \( x \) is \( 3 \).