The correct answer is (B) : 6.9×10-2 mm
The Young's modulus of a steel wire of length \(6 m\) and cross-sectional area \(3 \,mm ^2\), is \(2 \times 10^{11}\) \(N / m ^2\). The wire is suspended from its support on a given planet A block of mass \(4 kg\) is attached to the free end of the wire. The acceleration due to gravity on the planet is \(\frac{1}{4}\) of its value on the earth The elongation of wire is (Take \(g\) on the earth \(=10\, m / s ^2\)) :
A steel wire of length 3.2 m (Ys = 2.0 × 1011 Nm-2) and a copper wire of length 4.4 m (Yc = 1.1 × 1011 Nm-2), both of radius 1.4 mm are connected end to end. When stretched by a load, the net elongation is found to be 1.4 mm. The load applied, in Newton, will be:
\((Given: π = \frac{22}{7})\)
Mechanical properties of solids intricate the characteristics such as the resistance to deformation and their strength. Strength is the ability of an object to resist the applied stress, to what extent can it bear the stress.