\[ 22\text{Ti}^{2+} \rightarrow [\text{Ar}]3d^2 \quad 23\text{V}^{2+} \rightarrow [\text{Ar}]3d^3 \quad 25\text{Mn}^{2+} \rightarrow [\text{Ar}]3d^5 \quad 26\text{Fe}^{2+} \rightarrow [\text{Ar}]3d^6 \]
The spin-only magnetic moment is given by:
\[ \mu_s = \sqrt{n(n+2)} \, \text{BM}, \]
where \(n\) is the number of unpaired electrons.
For \(\mu_s = 3.86 \, \text{BM}\):
\[ 3.86 = \sqrt{n(n+2)}. \]
Squaring both sides:
\[ 3.86^2 = n(n+2) \implies 14.9 \approx n(n+2). \]
Solving for \(n\),
we find: \[ n = 3. \]
The element with \(n = 3\) unpaired electrons in its \(+2\) oxidation state can be identified as follows: Configuration in \(+2\) state:
\[ 22\text{Ti}^{2+} \rightarrow [\text{Ar}]3d^2 \, (n=2), \quad 23\text{V}^{2+} \rightarrow [\text{Ar}]3d^3 \, (n=3), \quad 25\text{Mn}^{2+} \rightarrow [\text{Ar}]3d^5 \, (n=5), \quad 26\text{Fe}^{2+} \rightarrow [\text{Ar}]3d^6 \, (n=4). \]
Thus, the element is \(V\) (Vanadium) with atomic number 23.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)