Self-study helps students to build confidence in learning. It boosts the self-esteem of the learners. Recent surveys suggested that close to 50% of learners were self-taught using internet resources and upskilled themselves.
A student may spend 1 hour to 6 hours in a day in upskilling self. The probability distribution of the number of hours spent by a student is given below:
\[ P(X = x) = \begin{cases} kx^2, & \text{for } x = 1, 2, 3, \\ 2kx, & \text{for } x = 4, 5, 6, \\ 0, & \text{otherwise.} \end{cases} \]
where \( x \) denotes the number of hours. Based on the above information, answer the following questions:
(i) Express the probability distribution given above in the form of a probability distribution table.
(ii) Find the value of \( k \).
(iii)(a) Find the mean number of hours spent by the student.
(iii)(b) Find \( P(1 < X < 6) \).
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below: