Given: initial angular velocity $\omega_0 = 0$, final $\omega = 20$ rad/s, $t = 5$ s
Angular displacement $\theta = \omega_0 t + \dfrac{1}{2} \alpha t^2$
First find angular acceleration: $\alpha = \dfrac{\omega - \omega_0}{t} = \dfrac{20 - 0}{5} = 4$ rad/s$^2$
Now compute displacement: $\theta = 0 + \dfrac{1}{2} \times 4 \times 5^2 = 2 \times 25 = 50$ rad