A die is thrown twice. Let us represent the event 'obtaining an odd number on the first throw' by A and the event 'obtaining an odd number on the second throw' by B. Test the independency of the events A and B.
Step 1: The events \( A \) and \( B \) are independent if: \[ P(A \cap B) = P(A) \cdot P(B). \]
Step 2: For a fair die, the probability of rolling an odd number (1, 3, or 5) is \( \frac{3}{6} = \frac{1}{2} \), so: \[ P(A) = P(B) = \frac{1}{2}. \]
Step 3: The probability of both events occurring (i.e., rolling an odd number on both throws) is: \[ P(A \cap B) = P(\text{odd on first throw and odd on second throw}) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}. \]
Step 4: Now check if \( P(A \cap B) = P(A) \cdot P(B) \): \[ P(A \cap B) = \frac{1}{4}, \quad P(A) \cdot P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}. \] Since they are equal, the events \( A \) and \( B \) are independent.
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $