Step 1: Find probabilities.
Sample space: \( S = \{1,2,3,4,5,6\} \).
\[
P(E) = \frac{\text{multiples of 3}}{\text{total outcomes}} = \frac{2}{6} = \frac{1}{3}
\]
\[
P(F) = \frac{\text{even numbers}}{\text{total outcomes}} = \frac{3}{6} = \frac{1}{2}
\]
\[
P(E \cap F) = \frac{\text{even multiples of 3}}{\text{total outcomes}} = \frac{1}{6}
\]
Step 2: Check independence condition.
\[
P(E) \cdot P(F) = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}
\]
Since \( P(E \cap F) = P(E) P(F) \), events are independent.