Question:

A diatomic molecule has a dipole moment of \( 1.2 \, D \). If the bond distance is \( 1 \, \text{Å} \), then fractional charge on each atom is ______ \( \times 10^{-1} \, \text{esu} \).
(Given \( 1 \, D = 10^{-18} \, \text{esu cm} \))

Updated On: Feb 3, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 0.25

Solution and Explanation

For the reaction:

\[ A(g) \rightleftharpoons B(g) + \frac{1}{2} C(g) \]

Step 1: Initial moles

Initial moles: \[ n_A = n, \quad n_B = 0, \quad n_C = 0 \]

Step 2: Equilibrium moles

Equilibrium moles: \[ n_A = n(1 - \alpha), \quad n_B = n\alpha, \quad n_C = \frac{n\alpha}{2} \]

Step 3: Total moles at equilibrium

Total moles: \[ n_{\text{total}} = n\left(1 + \alpha\right)/2 \]

Step 4: Equilibrium pressure expressions

Equilibrium pressure for each component: \[ P_A = \frac{(1 - \alpha)P}{1 + \alpha/2}, \quad P_B = \frac{\alpha P}{1 + \alpha/2}, \quad P_C = \frac{(\alpha/2) P}{1 + \alpha/2} \]

Step 5: Expression for \( K_p \)

The equilibrium constant \( K_p \) is given by: \[ K_p = \frac{\alpha P}{1 + \alpha/2} \times \left( \frac{\alpha P}{(2 + \alpha)} \right)^{1/2} \]

Step 6: Simplification

Simplifying the expression for \( K_p \): \[ K_p = \frac{\alpha P}{1 + \alpha/2} \times \frac{\alpha P^{1/2}}{(2 + \alpha)^{1/2}} \]

Final expression for \( K_p \):

\[ K_p = \frac{\alpha^{3/2} P^{1/2}}{(2 + \alpha)^{1/2} (1 - \alpha)} \]

Was this answer helpful?
0
0

Top Questions on Chemical bonding and molecular structure

View More Questions