Step 1: Formula for Acceleration in Rolling Motion:
- For a cylinder rolling down an incline, the acceleration \( a \) is given by:
\[ a = \frac{g \sin \theta}{1 + \frac{I_{cm}}{MR^2}} \]
- For a solid cylinder, \( I_{cm} = \frac{1}{2} MR^2 \).
Step 2: Substitute Values:
\[ a = \frac{g \sin \theta}{1 + \frac{1}{2}} \]
- Given \( g = 10 \, \text{m/s}^2 \) and \( \theta = 60^\circ \) (so \( \sin 60^\circ = \frac{\sqrt{3}}{2} \)):
\[ a = \frac{10 \times \frac{\sqrt{3}}{2}}{1 + \frac{1}{2}} \]
Step 3: Calculate \( a \):
\[ a = \frac{10 \times \frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{10 \sqrt{3}}{3} = \frac{x}{\sqrt{3}} \]
- Therefore, \( x = 10 \).
So, the correct answer is: \( x = 10 \)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: