The radius of curvature \( R = 4 \, \text{m} \), so the focal length \( f = \frac{R}{2} = 2 \, \text{m} \).
The object distance \( u = -8 \, \text{m} \) (since the object is behind the mirror).
Using the mirror formula:
\[
\frac{1}{f} = \frac{1}{v} + \frac{1}{u}
\]
Substitute the values:
\[
\frac{1}{2} = \frac{1}{v} - \frac{1}{8}
\]
Solving for \( v \) (image distance):
\[
\frac{1}{v} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8}
\]
\[
v = \frac{8}{5} = 1.6 \, \text{m}
\]
Thus, the image will be formed at a distance of \( 1.6 \, \text{m} \) behind the mirror (virtual image).