To solve this problem, we need to equate the angular width of the central maximum of the single-slit diffraction pattern to the angular width containing 20 maxima of the double-slit interference pattern. This provides an equation to compute the width of each slit.
Step-by-step Solution:
Calculate 'x' Value:
The width of each slit is accurately determined, confirming the 'x' value as 15.
The strain-stress plot for materials A, B, C and D is shown in the figure. Which material has the largest Young's modulus? 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
