\(\frac{1}{\sqrt{2}}\) x10-12 N.m and \(\frac{1}{\sqrt{2}}\) x10-12 J
\(\frac{1}{\sqrt{2}}\) x10-12 N.m and \(\sqrt{2}\) x10-12 J
\(\sqrt{2}\) x10-12 N.m and \(\frac{1}{\sqrt{2}}\) x10-12 J
\(\sqrt{2}\) x10-12 N.m and \(\sqrt{2}\) x10-12 J
\(\frac{\sqrt{3}}{2}\) x10-12 N.m and \(\frac{\sqrt{3}}{2}\)x10-12 J
Given parameters:
Dipole moment calculation: \[ p = q \times d = 10^{-9} \times 10^{-6} = 10^{-15} \, \text{C.m} \]
Torque on dipole: \[ \tau = pE \sinθ = 10^{-15} \times 1000 \times \sin45° = \frac{10^{-12}}{\sqrt{2}} \, \text{N.m} \]
Potential energy: \[ U = -pE \cosθ = -10^{-15} \times 1000 \times \cos45° = -\frac{10^{-12}}{\sqrt{2}} \, \text{J} \]
Thus, the correct option is (A): \( \frac{1}{\sqrt{2}} \times 10^{-12} \, \text{N.m} \) and \( \frac{1}{\sqrt{2}} \times 10^{-12} \, \text{J} \).
1. Calculate the dipole moment (p):
The electric dipole moment (p) is given by:
\[p = qd\]
where:
\[p = (1 \times 10^{-9} \, C)(1 \times 10^{-6} \, m) = 1 \times 10^{-15} \, C \cdot m\]
2. Calculate the torque (τ):
The torque (τ) on an electric dipole in an electric field (E) is given by:
\[\tau = pE\sin\theta\]
where θ = 45° is the angle between the dipole moment and the electric field.
\[\tau = (1 \times 10^{-15} \, C \cdot m)(1000 \, V/m)\sin(45^\circ) = 10^{-12} \frac{1}{\sqrt{2}} \, N \cdot m\]
3. Calculate the potential energy (U):
The potential energy (U) of an electric dipole in an electric field is given by:
\[U = -pE\cos\theta\]
\[U = -(1 \times 10^{-15} \, C \cdot m)(1000 \, V/m)\cos(45^\circ) = -10^{-12} \frac{1}{\sqrt{2}} \, J\]
The question asks for the potential *energy*, so we're interested in the magnitude:
\[|U| = \frac{1}{\sqrt{2}} \times 10^{-12} \, J\]
If \( 2 \) is a solution of the inequality \( \frac{x-a}{a-2x}<-3 \), then \( a \) must lie in the interval:
An electric dipole is a pair of equal and opposite point charges -q and q, separated by a distance of 2a. The direction from q to -q is said to be the direction in space.
p=q×2a
where,
p denotes the electric dipole moment, pointing from the negative charge to the positive charge.