To find the velocity of sound using the given problem, we'll utilize the principles of sound waves in organ pipes. Since both pipes are in fundamental modes, we'll use the fundamental frequency formulas for open and closed pipes.
The calculated velocity of sound \(v = 294 \, \text{m/s}\) is within the specified range (294, 294).
For a closed pipe of length \(L = 150 \, \text{cm} = 1.5 \, \text{m}\):
The fundamental frequency is given by:
\(f_c = \frac{v}{4L}.\)
For an open pipe of length \(L = 350 \, \text{cm} = 3.5 \, \text{m}\):
The fundamental frequency is given by:
\(f_o = \frac{v}{2L}.\)
Given that the beat frequency is:
\(|f_c - f_o| = 7 \, \text{Hz}.\)
Substituting:
\(\left| \frac{v}{4 \cdot 1.5} - \frac{v}{2 \cdot 3.5} \right| = 7.\)
Simplifying:
\(\left| \frac{v}{6} - \frac{v}{7} \right| = 7.\)
Solving for \(v\):
\(\frac{v}{42} = 7 \implies v = 42 \cdot 7 = 294 \, \text{m/s}.\)
The Correct answer is: 294
Two loudspeakers (\(L_1\) and \(L_2\)) are placed with a separation of \(10 \, \text{m}\), as shown in the figure. Both speakers are fed with an audio input signal of the same frequency with constant volume. A voice recorder, initially at point \(A\), at equidistance to both loudspeakers, is moved by \(25 \, \text{m}\) along the line \(AB\) while monitoring the audio signal. The measured signal was found to undergo \(10\) cycles of minima and maxima during the movement. The frequency of the input signal is _____________ Hz.
(Speed of sound in air is \(324 \, \text{m/s}\) and \( \sqrt{5} = 2.23 \)) 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 