To find the additional distance traveled by the tip of the second hand compared to the minute hand in 30 minutes, we need to calculate the respective circumferences traveled by each hand and then find their difference.
Thus, the value of \(x\) in meters is nearly 139.4 meters.
The distance traveled by the tip of the minute hand in one revolution is:
\( x_{\text{min}} = \pi \times r_{\text{min}} = \pi \times \frac{60}{100} \, \text{m}. \)
\( x_{\text{min}} = 3.14 \times 0.6 = 1.884 \, \text{m}. \)
The distance traveled by the tip of the second hand in 30 minutes is:
\( x_{\text{second}} = 30 \times 2\pi \times r_{\text{second}} \)
\( x_{\text{second}} = 30 \times 2 \times 3.14 \times \frac{75}{100} \, \text{m}. \)
\( x_{\text{second}} = 30 \times 4.71 = 141.3 \, \text{m}. \)
The difference in distance is:
\( x = x_{\text{second}} - x_{\text{min}} = 141.3 - 1.884 \, \text{m}. \)
\( x = 139.4 \, \text{m}. \)
Final Answer: 139.4 m.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Two point charges 2q and q are placed at vertex A and centre of face CDEF of the cube as shown in figure. The electric flux passing through the cube is : 
Suppose there is a uniform circular disc of mass M kg and radius r m shown in figure. The shaded regions are cut out from the disc. The moment of inertia of the remainder about the axis A of the disc is given by $\frac{x{256} Mr^2$. The value of x is ___.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 