The distance traveled by the tip of the minute hand in one revolution is:
\( x_{\text{min}} = \pi \times r_{\text{min}} = \pi \times \frac{60}{100} \, \text{m}. \)
\( x_{\text{min}} = 3.14 \times 0.6 = 1.884 \, \text{m}. \)
The distance traveled by the tip of the second hand in 30 minutes is:
\( x_{\text{second}} = 30 \times 2\pi \times r_{\text{second}} \)
\( x_{\text{second}} = 30 \times 2 \times 3.14 \times \frac{75}{100} \, \text{m}. \)
\( x_{\text{second}} = 30 \times 4.71 = 141.3 \, \text{m}. \)
The difference in distance is:
\( x = x_{\text{second}} - x_{\text{min}} = 141.3 - 1.884 \, \text{m}. \)
\( x = 139.4 \, \text{m}. \)
Final Answer: 139.4 m.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).