The distance traveled by the tip of the minute hand in one revolution is:
\( x_{\text{min}} = \pi \times r_{\text{min}} = \pi \times \frac{60}{100} \, \text{m}. \)
\( x_{\text{min}} = 3.14 \times 0.6 = 1.884 \, \text{m}. \)
The distance traveled by the tip of the second hand in 30 minutes is:
\( x_{\text{second}} = 30 \times 2\pi \times r_{\text{second}} \)
\( x_{\text{second}} = 30 \times 2 \times 3.14 \times \frac{75}{100} \, \text{m}. \)
\( x_{\text{second}} = 30 \times 4.71 = 141.3 \, \text{m}. \)
The difference in distance is:
\( x = x_{\text{second}} - x_{\text{min}} = 141.3 - 1.884 \, \text{m}. \)
\( x = 139.4 \, \text{m}. \)
Final Answer: 139.4 m.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: