If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .
Given quadratic \[ a(b-c)x^2 + b(c-a)x + c(a-b)=0, \] and it has equal roots with one root \(x=1\). So both roots are \(1\).
Sum of roots \(=1+1=2\). By comparing with \(\displaystyle -\frac{\text{coefficient of }x}{\text{coefficient of }x^2}\), \[ \frac{b(c-a)}{a(b-c)}=2. \] Rearranging gives \[ b(c-a)=2a(b-c)\;\Rightarrow\; bc-ba = 2ab-2ac. \] Bringing terms together, \[ 2ac = ab + bc = b(a+c). \]
Using \(a+c=15\) and \(b=\dfrac{36}{5}\), \[ 2ac = b(a+c)=\frac{36}{5}\cdot 15 =108, \] so \(ac=54\).
Finally, \[ a^2+c^2=(a+c)^2-2ac=15^2-2\cdot54=225-108=117. \]
\(\boxed{117}\)

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.