The centripetal acceleration acting on the ball is:
\[a_c = \omega^2 x.\]
Using the relationship between velocity and position:
\[v \frac{dv}{dx} = \omega^2 x.\]
Integrate both sides:
\[\int_0^v v \, dv = \int_1^3 \omega^2 x \, dx.\]
Solve the integrals:
\[\frac{v^2}{2} = \omega^2 \int_1^3 x \, dx = \omega^2 \left[\frac{x^2}{2}\right]_1^3.\]
Substitute the limits:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \left[3^2 - 1^2\right].\]
Simplify:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \times (9 - 1) = \omega^2 \times \frac{1}{2} \times 8 = 4\omega^2.\]
Solve for $v$:
\[v^2 = 8\omega^2 \implies v = \sqrt{8}\omega = 2\sqrt{2}\omega.\]
Thus, the radial velocity of the ball as it leaves the table is:
\[v = 2\sqrt{2}\omega,\]
where $x = 2$.
A uniform circular disc of radius \( R \) and mass \( M \) is rotating about an axis perpendicular to its plane and passing through its center. A small circular part of radius \( R/2 \) is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as given above.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: