The centripetal acceleration acting on the ball is:
\[a_c = \omega^2 x.\]
Using the relationship between velocity and position:
\[v \frac{dv}{dx} = \omega^2 x.\]
Integrate both sides:
\[\int_0^v v \, dv = \int_1^3 \omega^2 x \, dx.\]
Solve the integrals:
\[\frac{v^2}{2} = \omega^2 \int_1^3 x \, dx = \omega^2 \left[\frac{x^2}{2}\right]_1^3.\]
Substitute the limits:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \left[3^2 - 1^2\right].\]
Simplify:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \times (9 - 1) = \omega^2 \times \frac{1}{2} \times 8 = 4\omega^2.\]
Solve for $v$:
\[v^2 = 8\omega^2 \implies v = \sqrt{8}\omega = 2\sqrt{2}\omega.\]
Thus, the radial velocity of the ball as it leaves the table is:
\[v = 2\sqrt{2}\omega,\]
where $x = 2$.
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: