The given problem involves the analysis of motion on a rotating table. We need to determine the value of \( x \) in the expression for the radial velocity of a steel ball leaving the table.
Consider the forces acting on the ball. As the table rotates with angular velocity \( \omega \), the centrifugal force acts outward on the ball. This force is given by \( F = m \omega^2 r \), where \( r \) is the radial distance from the center of the table.
The ball is initially placed at a distance \( r_0 = 1 \, \text{m} \) from the center. As it moves outward, it experiences no tangential force (due to the smooth groove) and gains only radial kinetic energy due to centrifugal force. As the ball reaches the edge of the table at \( r = 3 \, \text{m} \), its radial kinetic energy can be expressed as:
\[ \frac{1}{2} m v_r^2 = \int_{r_0}^{3} m \omega^2 r \, dr \]
Solving the integral, we find:
\[ \int_{1}^{3} \omega^2 r \, dr = \left. \frac{\omega^2 r^2}{2} \right|_{1}^{3} = \frac{\omega^2 (3^2 - 1^2)}{2} = \frac{\omega^2 (9 - 1)}{2} = 4\omega^2 \]
Equating the kinetic energy:
\[ \frac{1}{2} m v_r^2 = m \cdot 4\omega^2 \]
Simplifying,
\[ v_r^2 = 8\omega^2 \]
\[ v_r = \sqrt{8}\omega = 2\sqrt{2}\omega \]
Thus, the final radial velocity of the ball is \( 2\sqrt{2}\omega \, \text{m/s} \), and comparing with \( x\sqrt{2}\omega \, \text{m/s} \), we determine that \( x = 2 \).
This value fits perfectly within the specified range of \( 2,2 \).
The centripetal acceleration acting on the ball is:
\[a_c = \omega^2 x.\]
Using the relationship between velocity and position:
\[v \frac{dv}{dx} = \omega^2 x.\]
Integrate both sides:
\[\int_0^v v \, dv = \int_1^3 \omega^2 x \, dx.\]
Solve the integrals:
\[\frac{v^2}{2} = \omega^2 \int_1^3 x \, dx = \omega^2 \left[\frac{x^2}{2}\right]_1^3.\]
Substitute the limits:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \left[3^2 - 1^2\right].\]
Simplify:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \times (9 - 1) = \omega^2 \times \frac{1}{2} \times 8 = 4\omega^2.\]
Solve for $v$:
\[v^2 = 8\omega^2 \implies v = \sqrt{8}\omega = 2\sqrt{2}\omega.\]
Thus, the radial velocity of the ball as it leaves the table is:
\[v = 2\sqrt{2}\omega,\]
where $x = 2$.
A wheel of radius $ 0.2 \, \text{m} $ rotates freely about its center when a string that is wrapped over its rim is pulled by a force of $ 10 \, \text{N} $. The established torque produces an angular acceleration of $ 2 \, \text{rad/s}^2 $. Moment of inertia of the wheel is............. kg m².

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.