The centripetal acceleration acting on the ball is:
\[a_c = \omega^2 x.\]
Using the relationship between velocity and position:
\[v \frac{dv}{dx} = \omega^2 x.\]
Integrate both sides:
\[\int_0^v v \, dv = \int_1^3 \omega^2 x \, dx.\]
Solve the integrals:
\[\frac{v^2}{2} = \omega^2 \int_1^3 x \, dx = \omega^2 \left[\frac{x^2}{2}\right]_1^3.\]
Substitute the limits:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \left[3^2 - 1^2\right].\]
Simplify:
\[\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \times (9 - 1) = \omega^2 \times \frac{1}{2} \times 8 = 4\omega^2.\]
Solve for $v$:
\[v^2 = 8\omega^2 \implies v = \sqrt{8}\omega = 2\sqrt{2}\omega.\]
Thus, the radial velocity of the ball as it leaves the table is:
\[v = 2\sqrt{2}\omega,\]
where $x = 2$.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $