Step 1: Area of sector
The angle at the centre is $120^\circ$.
Area of sector $OAB = \dfrac{\theta}{360^\circ} \times \pi r^2$
$= \dfrac{120}{360} \times \pi \times (14)^2$
$= \dfrac{1}{3} \times \pi \times 196$
$= \dfrac{196\pi}{3}$ cm$^2$
Step 2: Area of triangle $OAB$
Here, $\triangle OAB$ is an isosceles triangle with $OA = OB = 14$ cm and $\angle AOB = 120^\circ$.
Area of $\triangle OAB = \dfrac{1}{2} \times OA \times OB \times \sin(120^\circ)$
$= \dfrac{1}{2} \times 14 \times 14 \times \dfrac{\sqrt{3}}{2}$
$= 49\sqrt{3}$ cm$^2$
Step 3: Area of segment
Area of segment = Area of sector $-$ Area of triangle
$= \dfrac{196\pi}{3} - 49\sqrt{3}$ cm$^2$
\[
\boxed{\dfrac{196\pi}{3} - 49\sqrt{3} \ \text{cm}^2}
\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.