Step 1: Use arc length formula.
Length of arc is given by
\[
l=\frac{\theta}{360^\circ}\times 2\pi r.
\]
Step 2: Substitute values.
Here, $r=14$ cm and $\theta=30^\circ$, so
\[
l=\frac{30}{360}\times 2\pi \times 14
=\frac{1}{12}\times 28\pi
=\frac{28\pi}{12}
=\frac{7\pi}{3}.
\]
Step 3: Simplify and approximate.
\[
l=\frac{7\pi}{3}\ \text{cm}.
\]
Using $\pi\approx 3.14$,
\[
l=\frac{7\times 3.14}{3}=7.33\ \text{cm (approx)}.
\]
\boxed{\text{Arc length }=\frac{7\pi}{3}\ \text{cm } \approx 7.33\ \text{cm}}

$PQ$ is a chord of length $4\ \text{cm}$ of a circle of radius $2.5\ \text{cm}$. The tangents at $P$ and $Q$ intersect at a point $T$. Find the length of $TP$.