Step 1: Use arc length formula.
Length of arc is given by
\[
l=\frac{\theta}{360^\circ}\times 2\pi r.
\]
Step 2: Substitute values.
Here, $r=14$ cm and $\theta=30^\circ$, so
\[
l=\frac{30}{360}\times 2\pi \times 14
=\frac{1}{12}\times 28\pi
=\frac{28\pi}{12}
=\frac{7\pi}{3}.
\]
Step 3: Simplify and approximate.
\[
l=\frac{7\pi}{3}\ \text{cm}.
\]
Using $\pi\approx 3.14$,
\[
l=\frac{7\times 3.14}{3}=7.33\ \text{cm (approx)}.
\]
\boxed{\text{Arc length }=\frac{7\pi}{3}\ \text{cm } \approx 7.33\ \text{cm}}
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.