Step 1: Formula for area of a sector
\[
\text{Area of sector} = \frac{\theta}{360^\circ} \times \pi r^2
\]
Step 2: Substitute values
Here, $\theta = 60^\circ$, $r = 6$ cm.
\[
\text{Area} = \frac{60}{360} \times \pi \times 6^2
\]
\[
= \frac{1}{6} \times \pi \times 36 = 6\pi\ \text{cm}^2
\]
Step 3: Verify carefully
Oops! Our result is $6\pi$ cm$^2$, not $12\pi$. Let's check options again:
Given options: $36\pi, 12\pi, 6\pi, 132$. Correct match is (C) $6\pi\ \text{cm}^2$.
\[
\boxed{\text{Area of sector} = 6\pi\ \text{cm}^2}
\]

$PQ$ is a chord of length $4\ \text{cm}$ of a circle of radius $2.5\ \text{cm}$. The tangents at $P$ and $Q$ intersect at a point $T$. Find the length of $TP$.