Let AB be the chord of the circle subtending 90° angle at centre O of the circle.
(ii) Area of major sector OADB = \((\frac{360^{\degree} - 90^{\degree}}{360^{\degree}}) \times \pi r^2\) = \((\frac{270 ^{\degree}}{360^{\degree}})\)\(\pi r^2\)
= \(\frac{3}{4} \times 3.14 \times 10 \times 10\)
= \(235.5 \, cm^2\)
Area of minor sector OACB = \(\frac{90^{\degree}}{360 ^{\degree}} \times \pi r^2\)
= \(\frac {1}4 \times 3.14 \times 10 \times 10\)
= \(78.5\, cm^2\)
Area of ΔOAB = \(\frac{1} 2\times OA \times OB = \frac{1} 2\times 10 \times 10 = 50 \,cm^2\)
(i) Area of minor segment ACB = Area of minor sector OACB - Area of ΔOAB
= 78.5 - 50 = 28.5 \(cm^2\)