time \(t\) for 1 rev \(= 3.14 \, \text{sec}\) or \(\pi \, \text{sec}\).
So, \(\theta\) for 1 rev \(= 2\pi \, \text{rad}\).
Therefore, \(\omega = \frac{\theta}{t} = \frac{2\pi}{\pi} = 2 \, \text{rad/s}\).Centrifugal force \(F = mR\omega^2 = 5 \times 2 \times 2^2 = 40 \, \text{N}\).


Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: