time \(t\) for 1 rev \(= 3.14 \, \text{sec}\) or \(\pi \, \text{sec}\).
So, \(\theta\) for 1 rev \(= 2\pi \, \text{rad}\).
Therefore, \(\omega = \frac{\theta}{t} = \frac{2\pi}{\pi} = 2 \, \text{rad/s}\).Centrifugal force \(F = mR\omega^2 = 5 \times 2 \times 2^2 = 40 \, \text{N}\).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)