time \(t\) for 1 rev \(= 3.14 \, \text{sec}\) or \(\pi \, \text{sec}\).
So, \(\theta\) for 1 rev \(= 2\pi \, \text{rad}\).
Therefore, \(\omega = \frac{\theta}{t} = \frac{2\pi}{\pi} = 2 \, \text{rad/s}\).Centrifugal force \(F = mR\omega^2 = 5 \times 2 \times 2^2 = 40 \, \text{N}\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: