The force on a current-carrying conductor in a magnetic field is given by the formula:
\[
\vec{F} = I \, \ell \, \vec{B} \times \hat{l}
\]
where:
- \( I \) is the current in the conductor (2 A),
- \( \ell \) is the length of the conductor (0.1 m),
- \( \vec{B} \) is the magnetic field, and
- \( \hat{l} \) is the unit vector along the direction of the current, which is \( \hat{i} \) in the \( +x \)-direction.
Given:
- \( I = 2 \, \text{A} \),
- \( \ell = 0.1 \, \text{m} \),
- \( \vec{B} = (0.6 \hat{j} + 0.8 \hat{k}) \, \text{T} \),
- \( \hat{l} = \hat{i} \).
Now, calculate the cross product \( \vec{B} \times \hat{l} \):
\[
\vec{B} \times \hat{l} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 0 & 0
0.6 & 0.8 & 0 \end{vmatrix}
\]
\[
= \hat{i} \left( 0 \cdot 0 - 0.8 \cdot 0 \right) - \hat{j} \left( 0 \cdot 0 - 0.6 \cdot 0 \right) + \hat{k} \left( 1 \cdot 0.8 - 0.6 \cdot 0 \right)
\]
\[
= 0 \hat{i} - 0 \hat{j} + 0.8 \hat{k}
\]
Thus, the cross product is \( \vec{B} \times \hat{l} = 0 \hat{i} + 0 \hat{j} + 0.8 \hat{k} \).
Now, the force is:
\[
\vec{F} = I \, \ell \, \vec{B} \times \hat{l} = 2 \times 0.1 \times (0 \hat{i} + 0 \hat{j} + 0.8 \hat{k})
\]
\[
\vec{F} = (0 \hat{i} + 0.16 \hat{j} + 0.12 \hat{k}) \, \text{N}
\]
Thus, the correct answer is \({(-0.16 \hat{j} + 0.12 \hat{k}) \, \text{N}} \).