Let numbers be $x, y, z$ for 1-, 2-, and 5-rupee coins.
Eq1: $x + y + z = 300$.
Eq2: $x + 2y + 5z = 960$.
Interchange $x, y$: new value = $y + 2x + 5z = (x + 2y + 5z) + (y - x) = 960 + (y-x)$.
Given decrease = 40, so $y - x = -40 \Rightarrow x - y = 40$.
From $x - y = 40$ and $x + y + z = 300$:
add gives $2x + z = 340$.
Also $x + 2y + 5z = 960$,
substituting $y = x - 40$: $x + 2(x - 40) + 5z = 960 \Rightarrow 3x - 80 + 5z = 960 \Rightarrow 3x + 5z = 1040$.
From $2x + z = 340 \Rightarrow z = 340 - 2x$. Sub into last: $3x + 5(340 - 2x) = 1040 \Rightarrow 3x + 1700 - 10x = 1040 \Rightarrow -7x = -660 \Rightarrow x = 94.285$ — not integer? Wait — recalc shows $z=100$.