A capacitor of capacitance ‘C’ is charged to a potential ‘V’ and disconnected from the battery. Now if the space between the plates is completely filled with a substance of dielectric constant ‘K’, the final charge and the final potential on the capacitor are respectively:
\( KCV \) and \( \frac{V}{K} \)
\( CV \) and \( \frac{V}{K} \)
\( \frac{CV}{K} \) and \( KV \)
\( \frac{CV}{K} \) and \( \frac{V}{K} \)
Step 1: Understanding the Effect of Dielectric on a Disconnected Capacitor Since the capacitor is disconnected from the battery, its charge remains constant. The charge on the capacitor is given by: \[ Q = C V \] Step 2: Effect of Introducing the Dielectric When a dielectric material with dielectric constant \( K \) is introduced, the capacitance of the capacitor increases as: \[ C' = K C \] However, since the charge remains constant, the new potential \( V' \) across the capacitor is given by: \[ V' = \frac{Q}{C'} = \frac{CV}{KC} = \frac{V}{K} \] Thus, the final charge remains \( CV \), and the new potential is \( \frac{V}{K} \).
Find work done in bringing charge q = 3nC from infinity to point A as shown in the figure : 
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below: