The energy stored in a capacitor is given by:
\( U = \frac{1}{2} C V^2 \)
Differentiating with respect to time:
\( \frac{dU}{dt} = C V \frac{dV}{dt} \)
Substituting the given values:
\( C = 5 \times 10^{-6} \, \text{F}, \quad V = 4 \, \text{V}, \quad \frac{dV}{dt} = 0.6 \, \text{V/s} \)
\( \frac{dU}{dt} = (5 \times 10^{-6}) \cdot 4 \cdot 0.6 = 12 \times 10^{-6} \, \text{W} = 12\,\mu\text{W} \)
Thus, the solution is \( {12\,\mu\text{W}} \).
The energy stored in a capacitor is given by: \[ E = \frac{1}{2} C V^2 \] The rate at which energy is stored is: \[ \frac{dE}{dt} = C \times V \times \frac{dV}{dt} \] Given: - \( C = 5 \times 10^{-6} \, \text{F} \) - \( V = 4 \, \text{V} \) - \( \frac{dV}{dt} = 0.6 \, \text{V/s} \) Thus: \[ \frac{dE}{dt} = (5 \times 10^{-6}) \times 4 \times 0.6 = 12 \times 10^{-6} \, \text{W} = 12 \, \mu\text{W} \] Thus, the rate at which energy is stored is \(12\ µW\).