Step 1: Using the kinematic equation for vertical motion
The equation of motion for vertical displacement:
\[
v^2 = u^2 - 2g s
\]
At maximum height \( H \), the final velocity is zero:
\[
0 = u^2 - 2gH
\]
Solving for \( u^2 \):
\[
u^2 = 2gH
\]
Now, considering the time to reach height \( \frac{H}{2} \), we use:
\[
H/2 = u t - \frac{1}{2} g t^2
\]
Substituting \( u = \sqrt{2gH} \):
\[
\frac{H}{2} = \sqrt{2gH} t - \frac{1}{2} g t^2
\]
Rearranging:
\[
g t^2 - 2\sqrt{2gH} t + H = 0
\]
Step 2: Solving the quadratic equation
Dividing throughout by \( g \):
\[
t^2 - \frac{2\sqrt{2H}}{g} t + \frac{H}{g} = 0
\]
Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
\[
t = \frac{\frac{2\sqrt{2H}}{g} \pm \sqrt{\left( \frac{2\sqrt{2H}}{g} \right)^2 - 4 \times \frac{H}{g}}}{2}
\]
\[
t = \frac{\frac{2\sqrt{2H}}{g} \pm \sqrt{\frac{8H}{g} - \frac{4H}{g}}}{2}
\]
\[
t = \frac{\frac{2\sqrt{2H}}{g} \pm \sqrt{\frac{4H}{g}}}{2}
\]
\[
t = \frac{\frac{2\sqrt{2H}}{g} \pm \frac{2\sqrt{H}}{g}}{2}
\]
\[
t = \frac{2\sqrt{H}(\sqrt{2} \pm 1)}{2g}
\]
\[
t = \frac{\sqrt{H}(\sqrt{2} \pm 1)}{g}
\]
Step 3: Finding the ratio of the times
Since the two possible values of \( t \) are:
\[
t_1 = \frac{\sqrt{H}(\sqrt{2} -1)}{g}, \quad t_2 = \frac{\sqrt{H}(\sqrt{2} +1)}{g}
\]
The required ratio is:
\[
\frac{t_1}{t_2} = (\sqrt{2} -1) : (\sqrt{2} +1)
\]
Step 4: Verifying the correct option
Comparing with the given options, the correct answer is:
\[
\mathbf{(\sqrt{2} -1) : (\sqrt{2} +1)}
\]