Step 1: Understanding the Concept:
This is a projectile motion problem. We are given the initial velocity and maximum height and need to find the horizontal range. We can use the formula for maximum height to find the angle of projection first, and then use that angle to find the range. We'll use \(g = 9.8 \text{ m/s}^2\).
Step 2: Key Formulae:
Maximum Height: \(H = \frac{u^2 \sin^2 \theta}{2g}\)
Horizontal Range: \(R = \frac{u^2 \sin(2\theta)}{g}\)
Given: \(u = 19.6\) m/s, \(H = 9.8\) m.
Step 3: Detailed Explanation:
First, we find the angle of projection, \(\theta\), using the maximum height formula.
\[ 9.8 = \frac{(19.6)^2 \sin^2 \theta}{2 \times 9.8} \]
\[ (9.8) \times (2 \times 9.8) = (19.6)^2 \sin^2 \theta \]
Since \(19.6 = 2 \times 9.8\), we can write:
\[ 2 \times (9.8)^2 = (2 \times 9.8)^2 \sin^2 \theta \]
\[ 2 \times (9.8)^2 = 4 \times (9.8)^2 \sin^2 \theta \]
\[ \sin^2 \theta = \frac{2 \times (9.8)^2}{4 \times (9.8)^2} = \frac{1}{2} \]
\[ \sin \theta = \frac{1}{\sqrt{2}} \]
This implies that the angle of projection is \(\theta = 45^\circ\).
Now, we can calculate the range \(R\) using the range formula and \(\theta = 45^\circ\).
\[ R = \frac{u^2 \sin(2\theta)}{g} = \frac{(19.6)^2 \sin(2 \times 45^\circ)}{9.8} \]
\[ R = \frac{(19.6)^2 \sin(90^\circ)}{9.8} \]
Since \(\sin(90^\circ) = 1\):
\[ R = \frac{(19.6)^2}{9.8} = \frac{19.6 \times 19.6}{9.8} = 2 \times 19.6 = 39.2 \text{ m} \]
Step 4: Final Answer:
The range of the projectile is 39.2 m. Therefore, option (B) is correct.