Given that the body moves under the influence of a constant power source, we aim to find the relation between the displacement \( s \) and the time \( t \).
Step 1: Understanding the Relationship Between Power and Velocity
Power \( P \) delivered to the body is constant and is given by:
\[ P = Fv, \]
where:
- \( F \) is the force acting on the body,
- \( v \) is the velocity of the body.
Using Newton’s second law \( F = ma \), where \( m \) is the mass and \( a \) is the acceleration, we have:
\[ P = mav. \]
Since power is constant, we can write:
\[ P = mv \frac{dv}{dt}. \]
Step 2: Integrating the Equation
Rearranging:
\[ P \, dt = mv \, dv. \]
Integrating both sides:
\[ \int P \, dt = \int mv \, dv. \]
This yields:
\[ Pt = \frac{mv^2}{2} \implies v^2 = \frac{2Pt}{m}. \]
Taking the square root:
\[ v = \sqrt{\frac{2Pt}{m}}. \]
Step 3: Finding the Displacement
Velocity is the derivative of displacement with respect to time:
\[ v = \frac{ds}{dt} = \sqrt{\frac{2Pt}{m}}. \]
Rearranging and integrating:
\[ ds = \sqrt{\frac{2P}{m}} \, t^{1/2} \, dt. \]
Integrating both sides:
\[ s \propto t^{3/2}. \]
Therefore, the displacement \( s \) is proportional to \( t^{3/2} \).
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to