Given that the body moves under the influence of a constant power source, we aim to find the relation between the displacement \( s \) and the time \( t \).
Step 1: Understanding the Relationship Between Power and Velocity
Power \( P \) delivered to the body is constant and is given by:
\[ P = Fv, \]
where:
- \( F \) is the force acting on the body,
- \( v \) is the velocity of the body.
Using Newton’s second law \( F = ma \), where \( m \) is the mass and \( a \) is the acceleration, we have:
\[ P = mav. \]
Since power is constant, we can write:
\[ P = mv \frac{dv}{dt}. \]
Step 2: Integrating the Equation
Rearranging:
\[ P \, dt = mv \, dv. \]
Integrating both sides:
\[ \int P \, dt = \int mv \, dv. \]
This yields:
\[ Pt = \frac{mv^2}{2} \implies v^2 = \frac{2Pt}{m}. \]
Taking the square root:
\[ v = \sqrt{\frac{2Pt}{m}}. \]
Step 3: Finding the Displacement
Velocity is the derivative of displacement with respect to time:
\[ v = \frac{ds}{dt} = \sqrt{\frac{2Pt}{m}}. \]
Rearranging and integrating:
\[ ds = \sqrt{\frac{2P}{m}} \, t^{1/2} \, dt. \]
Integrating both sides:
\[ s \propto t^{3/2}. \]
Therefore, the displacement \( s \) is proportional to \( t^{3/2} \).
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
The output of the circuit is low (zero) for:

(A) \( X = 0, Y = 0 \)
(B) \( X = 0, Y = 1 \)
(C) \( X = 1, Y = 0 \)
(D) \( X = 1, Y = 1 \)
Choose the correct answer from the options given below:
The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Which of the following circuits has the same output as that of the given circuit?
