a block of mass m slides on the wooden wedge which in turn slides backward on the horizontal surface. The acceleration of the block with respect to the wedge is:
[ Given m= 8kg, M=16kg ]
[Assume all the surfaces shown in the figure to be frictionless]

\(\frac{4}{3}g\)
\(\frac{6}{5}g\)
\(\frac{3}{5}g\)
\(\frac{2}{3}g\)
To solve this problem, we need to find the acceleration of the block of mass \(m\) with respect to the wedge of mass \(M\). As given, assume all surfaces are frictionless. The angle given in the diagram is \(30^\circ\).

Thus, the acceleration of the block with respect to the wedge is approximately \(\frac{2}{3}g\), making the correct answer this option.
Find external force F so that block can move on inclined plane with constant velocity. 
Which of the following statements is true regarding static friction?
The driver sitting inside a parked car is watching vehicles approaching from behind with the help of his side view mirror, which is a convex mirror with radius of curvature \( R = 2 \, \text{m} \). Another car approaches him from behind with a uniform speed of 90 km/hr. When the car is at a distance of 24 m from him, the magnitude of the acceleration of the image of the side view mirror is \( a \). The value of \( 100a \) is _____________ m/s\(^2\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 