a block of mass m slides on the wooden wedge which in turn slides backward on the horizontal surface. The acceleration of the block with respect to the wedge is:
[ Given m= 8kg, M=16kg ]
[Assume all the surfaces shown in the figure to be frictionless]
\(\frac{4}{3}g\)
\(\frac{6}{5}g\)
\(\frac{3}{5}g\)
\(\frac{2}{3}g\)
The correct answer is (D) : \(\frac{2g}{3}\)
N cos60∘ = Ma1 = 16a1⇒ N = 32a1⊥ to incline N = 8g cos30∘ − 8a1 sin30∘ ⇒ 32
a1 = 4√3g − 4a1
A2 = \(\frac{\sqrt3}{9}\)g
8g sin30∘ + 8a1 cos30∘ = ma2 = 8a2
a2 = g\(\times\)\(\frac{1}{2}\)\(\times\)\(\frac{\sqrt3}{9}\)g\(\times\)\(\frac{\sqrt3}{2}\)
= \(\frac{2g}{3}\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: