For a rolling ring, the total mechanical energy is the sum of translational and rotational kinetic energies.
Moment of inertia of a ring about its center is \( I = MR^2 \), and angular velocity \( \omega = \frac{V}{R} \).
\[
\text{Translational K.
E.
} = \frac{1}{2}MV^2, \quad
\text{Rotational K.
E.
} = \frac{1}{2}I\omega^2 = \frac{1}{2}MR^2 \cdot \left(\frac{V}{R}\right)^2 = \frac{1}{2}MV^2
\]
\[
\text{Total energy} = \frac{1}{2}MV^2 + \frac{1}{2}MV^2 = MV^2
\]