
To solve this problem, we need to calculate the forces \(|\vec{F_1}|\) and \(|\vec{F_2}|\), and then find the difference \(|\vec{F_1}| - |\vec{F_2}|\).
Given:
The forces on the block parallel and perpendicular to the inclined plane are:
\(F_{\text{gravity parallel}} = mg \sin(\theta)\)
\(F_{\text{gravity perpendicular}} = mg \cos(\theta)\)
The limiting friction is given by:
\(F_{\text{friction}} = \mu \cdot F_{\text{gravity perpendicular}} = \mu \cdot mg \cos(\theta)\)
To move the block up, apply enough force to overcome both gravity and friction:
\(|\vec{F_1}| = F_{\text{gravity parallel}} + F_{\text{friction}}\)
\(= mg \sin(\theta) + \mu mg \cos(\theta)\)
Substituting values:
\(|\vec{F_1}| = 5 \cdot 10 \cdot \sin(30^\circ) + 0.1 \cdot 5 \cdot 10 \cdot \cos(30^\circ)\)
\(= 50 \cdot 0.5 + 0.1 \cdot 50 \cdot \frac{\sqrt{3}}{2}\)
\(= 25 + 2.5\sqrt{3}\)
To prevent sliding down, counteract gravity by friction:
\(|\vec{F_2}| = F_{\text{gravity parallel}} - F_{\text{friction}}\)
\(= mg \sin(\theta) - \mu mg \cos(\theta)\)
Substituting values:
\(|\vec{F_2}| = 5 \cdot 10 \cdot \sin(30^\circ) - 0.1 \cdot 5 \cdot 10 \cdot \cos(30^\circ)\)
\(= 25 - 2.5\sqrt{3}\)
\(|\vec{F_1}| - |\vec{F_2}| = (25 + 2.5\sqrt{3}) - (25 - 2.5\sqrt{3})\)
\(= 5\sqrt{3} \, \text{N}\)
Thus, the correct answer is \(5\sqrt{3} \, \text{N}\).
The block experiences frictional force due to the roughness of the inclined surface. The kinetic friction force \( f_k \) is given by:
\[ f_k = \mu mg \cos \theta, \]where \( \mu = 0.1 \) is the coefficient of friction, \( m = 5 \, \text{kg} \), and \( \theta = 30^\circ \).
Calculating \( f_k \):
\[ f_k = 0.1 \times 5 \times 10 \times \cos 30^\circ = 0.1 \times 50 \times \frac{\sqrt{3}}{2} = 2.5 \sqrt{3} \, \text{N}. \]To move the block up the incline, the force \( F_1 \) must overcome both the component of gravitational force along the incline and the frictional force. Therefore:
\[ F_1 = mg \sin \theta + f_k. \]Substitute the values:
\[ F_1 = 5 \times 10 \times \sin 30^\circ + 2.5 \sqrt{3} = 25 + 2.5 \sqrt{3} \, \text{N}. \]To prevent the block from sliding down, the force \( F_2 \) must balance the component of gravitational force along the incline, reduced by the frictional force. Thus:
\[ F_2 = mg \sin \theta - f_k. \]Substitute the values:
\[ F_2 = 25 - 2.5 \sqrt{3} \, \text{N}. \]The difference \( |F_1 - F_2| \) is:
\[ |F_1 - F_2| = |(25 + 2.5 \sqrt{3}) - (25 - 2.5 \sqrt{3})| = 5 \sqrt{3} \, \text{N}. \]Thus, the answer is:
\[ 5 \sqrt{3} \, \text{N}. \]A circular disc has radius \( R_1 \) and thickness \( T_1 \). Another circular disc made of the same material has radius \( R_2 \) and thickness \( T_2 \). If the moments of inertia of both the discs are same and \[ \frac{R_1}{R_2} = 2, \quad \text{then} \quad \frac{T_1}{T_2} = \frac{1}{\alpha}. \] The value of \( \alpha \) is __________.
A solid cylinder of radius $\dfrac{R}{3}$ and length $\dfrac{L}{2}$ is removed along the central axis. Find ratio of initial moment of inertia and moment of inertia of removed cylinder. 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 