
To solve this problem, we need to calculate the forces \(|\vec{F_1}|\) and \(|\vec{F_2}|\), and then find the difference \(|\vec{F_1}| - |\vec{F_2}|\).
Given:
The forces on the block parallel and perpendicular to the inclined plane are:
\(F_{\text{gravity parallel}} = mg \sin(\theta)\)
\(F_{\text{gravity perpendicular}} = mg \cos(\theta)\)
The limiting friction is given by:
\(F_{\text{friction}} = \mu \cdot F_{\text{gravity perpendicular}} = \mu \cdot mg \cos(\theta)\)
To move the block up, apply enough force to overcome both gravity and friction:
\(|\vec{F_1}| = F_{\text{gravity parallel}} + F_{\text{friction}}\)
\(= mg \sin(\theta) + \mu mg \cos(\theta)\)
Substituting values:
\(|\vec{F_1}| = 5 \cdot 10 \cdot \sin(30^\circ) + 0.1 \cdot 5 \cdot 10 \cdot \cos(30^\circ)\)
\(= 50 \cdot 0.5 + 0.1 \cdot 50 \cdot \frac{\sqrt{3}}{2}\)
\(= 25 + 2.5\sqrt{3}\)
To prevent sliding down, counteract gravity by friction:
\(|\vec{F_2}| = F_{\text{gravity parallel}} - F_{\text{friction}}\)
\(= mg \sin(\theta) - \mu mg \cos(\theta)\)
Substituting values:
\(|\vec{F_2}| = 5 \cdot 10 \cdot \sin(30^\circ) - 0.1 \cdot 5 \cdot 10 \cdot \cos(30^\circ)\)
\(= 25 - 2.5\sqrt{3}\)
\(|\vec{F_1}| - |\vec{F_2}| = (25 + 2.5\sqrt{3}) - (25 - 2.5\sqrt{3})\)
\(= 5\sqrt{3} \, \text{N}\)
Thus, the correct answer is \(5\sqrt{3} \, \text{N}\).
The block experiences frictional force due to the roughness of the inclined surface. The kinetic friction force \( f_k \) is given by:
\[ f_k = \mu mg \cos \theta, \]where \( \mu = 0.1 \) is the coefficient of friction, \( m = 5 \, \text{kg} \), and \( \theta = 30^\circ \).
Calculating \( f_k \):
\[ f_k = 0.1 \times 5 \times 10 \times \cos 30^\circ = 0.1 \times 50 \times \frac{\sqrt{3}}{2} = 2.5 \sqrt{3} \, \text{N}. \]To move the block up the incline, the force \( F_1 \) must overcome both the component of gravitational force along the incline and the frictional force. Therefore:
\[ F_1 = mg \sin \theta + f_k. \]Substitute the values:
\[ F_1 = 5 \times 10 \times \sin 30^\circ + 2.5 \sqrt{3} = 25 + 2.5 \sqrt{3} \, \text{N}. \]To prevent the block from sliding down, the force \( F_2 \) must balance the component of gravitational force along the incline, reduced by the frictional force. Thus:
\[ F_2 = mg \sin \theta - f_k. \]Substitute the values:
\[ F_2 = 25 - 2.5 \sqrt{3} \, \text{N}. \]The difference \( |F_1 - F_2| \) is:
\[ |F_1 - F_2| = |(25 + 2.5 \sqrt{3}) - (25 - 2.5 \sqrt{3})| = 5 \sqrt{3} \, \text{N}. \]Thus, the answer is:
\[ 5 \sqrt{3} \, \text{N}. \]A circular disc has radius \( R_1 \) and thickness \( T_1 \). Another circular disc made of the same material has radius \( R_2 \) and thickness \( T_2 \). If the moments of inertia of both the discs are same and \[ \frac{R_1}{R_2} = 2, \quad \text{then} \quad \frac{T_1}{T_2} = \frac{1}{\alpha}. \] The value of \( \alpha \) is __________.
A solid cylinder of radius $\dfrac{R}{3}$ and length $\dfrac{L}{2}$ is removed along the central axis. Find ratio of initial moment of inertia and moment of inertia of removed cylinder. 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.