The block experiences frictional force due to the roughness of the inclined surface. The kinetic friction force \( f_k \) is given by:
\[ f_k = \mu mg \cos \theta, \]where \( \mu = 0.1 \) is the coefficient of friction, \( m = 5 \, \text{kg} \), and \( \theta = 30^\circ \).
Calculating \( f_k \):
\[ f_k = 0.1 \times 5 \times 10 \times \cos 30^\circ = 0.1 \times 50 \times \frac{\sqrt{3}}{2} = 2.5 \sqrt{3} \, \text{N}. \]To move the block up the incline, the force \( F_1 \) must overcome both the component of gravitational force along the incline and the frictional force. Therefore:
\[ F_1 = mg \sin \theta + f_k. \]Substitute the values:
\[ F_1 = 5 \times 10 \times \sin 30^\circ + 2.5 \sqrt{3} = 25 + 2.5 \sqrt{3} \, \text{N}. \]To prevent the block from sliding down, the force \( F_2 \) must balance the component of gravitational force along the incline, reduced by the frictional force. Thus:
\[ F_2 = mg \sin \theta - f_k. \]Substitute the values:
\[ F_2 = 25 - 2.5 \sqrt{3} \, \text{N}. \]The difference \( |F_1 - F_2| \) is:
\[ |F_1 - F_2| = |(25 + 2.5 \sqrt{3}) - (25 - 2.5 \sqrt{3})| = 5 \sqrt{3} \, \text{N}. \]Thus, the answer is:
\[ 5 \sqrt{3} \, \text{N}. \]A, B and C are disc, solid sphere and spherical shell respectively with the same radii and masses. These masses are placed as shown in the figure.
The moment of inertia of the given system about PQ is $ \frac{x}{15} I $, where $ I $ is the moment of inertia of the disc about its diameter. The value of $ x $ is:
The molar solubility(s) of zirconium phosphate with molecular formula \( \text{Zr}^{4+} \text{PO}_4^{3-} \) is given by relation: