The block experiences frictional force due to the roughness of the inclined surface. The kinetic friction force \( f_k \) is given by:
\[ f_k = \mu mg \cos \theta, \]where \( \mu = 0.1 \) is the coefficient of friction, \( m = 5 \, \text{kg} \), and \( \theta = 30^\circ \).
Calculating \( f_k \):
\[ f_k = 0.1 \times 5 \times 10 \times \cos 30^\circ = 0.1 \times 50 \times \frac{\sqrt{3}}{2} = 2.5 \sqrt{3} \, \text{N}. \]To move the block up the incline, the force \( F_1 \) must overcome both the component of gravitational force along the incline and the frictional force. Therefore:
\[ F_1 = mg \sin \theta + f_k. \]Substitute the values:
\[ F_1 = 5 \times 10 \times \sin 30^\circ + 2.5 \sqrt{3} = 25 + 2.5 \sqrt{3} \, \text{N}. \]To prevent the block from sliding down, the force \( F_2 \) must balance the component of gravitational force along the incline, reduced by the frictional force. Thus:
\[ F_2 = mg \sin \theta - f_k. \]Substitute the values:
\[ F_2 = 25 - 2.5 \sqrt{3} \, \text{N}. \]The difference \( |F_1 - F_2| \) is:
\[ |F_1 - F_2| = |(25 + 2.5 \sqrt{3}) - (25 - 2.5 \sqrt{3})| = 5 \sqrt{3} \, \text{N}. \]Thus, the answer is:
\[ 5 \sqrt{3} \, \text{N}. \]A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: