The force on a current-carrying conductor in a magnetic field is given by:
\[ F_m = i L B \]
Equating with the gravitational force \( F_m = mg \), we get:
\[ i L B = mg \]
Solving for \(i\):
\[ i = \frac{mg}{L B} \]
Substitute the given values:
\[ i = \frac{(1 \times 10^{-3})(10)}{(0.1)(0.1)} \]
\[ i = \frac{1 \times 10^{-2}}{0.01} = 1 \ \text{A} \]
The resistance of the loop is given as \( R = 10 \ \Omega \). Using Ohm's Law:
\[ V = i R \]
Substitute \(i = 1 \ \text{A}\) and \(R = 10 \ \Omega\):
\[ V = (1)(10) = 10 \ \text{V} \]
\(V = 10 \ \text{V}\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: