A coil of area A and N turns is rotating with angular velocity \( \omega\) in a uniform magnetic field \(\vec{B}\) about an axis perpendicular to \( \vec{B}\) Magnetic flux \(\varphi \text{ and induced emf } \varepsilon \text{ across it, at an instant when } \vec{B} \text{ is parallel to the plane of the coil, are:}\)
$\varphi = 0, \quad \varepsilon = N A B \omega$
The problem involves finding the magnetic flux \(\varphi\) and the induced electromotive force (emf) \(\varepsilon\) in a rotating coil within a magnetic field.
Here's a step-by-step analysis:
Magnetic Flux \(\varphi\):
The magnetic flux through a coil is given by \(\varphi = B \cdot A \cdot \cos(\theta)\), where \(B\) is the magnetic field, \(A\) is the area of the coil, and \(\theta\) is the angle between the magnetic field and the normal to the plane of the coil.
When the magnetic field \(\vec{B}\) is parallel to the plane of the coil, \(\theta = 90^\circ\), hence, the flux \(\varphi = B \cdot A \cdot \cos(90^\circ) = 0\).
Induced emf \(\varepsilon\):
The induced emf in a rotating coil is given by Faraday’s law of electromagnetic induction, \(\varepsilon = -\frac{d\varphi}{dt}\).
For a coil with area \(A\), \(N\) turns, and rotating with angular velocity \(\omega\) in a magnetic field \(B\), when the magnetic field is parallel to the plane of the coil, the rate of change of flux is maximal.
The flux \(\varphi = B \cdot A \cdot \cos(\theta) = B \cdot A \cdot \cos(\omega t)\).
Differentiating with respect to time \(t\), we get \(\varepsilon = -N \frac{d}{dt}(BA\cos(\omega t)) = NAB\omega\sin(\omega t)\).
At the instant when \(\theta = 90^\circ\), \(\sin(\omega t) = 1\). Thus, \(\varepsilon = NAB\omega\).
Thus, at the moment \(\vec{B}\) is parallel to the coil plane, we have:
Result:
\(\varphi = 0, \quad \varepsilon = NAB\omega\)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: