Using the work-energy theorem, the total work done by all forces is equal to the change in kinetic energy (\(\Delta KE\)) of the system. Here:
\[w_g + w_{Fr} + w_s = \Delta KE.\]
Substituting the given values:
\[5 \times 10 \times 5 - 0.5 \times 5 \times 10 \times x - \frac{1}{2} Kx^2 = 0 - 0.\]
Simplifying:
\[250 - 25x - 50x^2 = 0.\]
Rewriting:
\[2x^2 + x - 10 = 0.\]
Solving this quadratic equation gives:
\[x = 2.\]
Thus, the maximum compression in the spring is \(x = 2\) m.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: