
To solve this problem, we need to calculate the maximum compression in the spring when the block hits it. We'll use energy conservation principles, factoring in gravitational potential energy, work done by friction, and spring potential energy.
Therefore, the maximum compression in the spring when the block hits the spring is \(2 \, \text{m}\).
Using the work-energy theorem, the total work done by all forces is equal to the change in kinetic energy (\(\Delta KE\)) of the system. Here:
\[w_g + w_{Fr} + w_s = \Delta KE.\]
Substituting the given values:
\[5 \times 10 \times 5 - 0.5 \times 5 \times 10 \times x - \frac{1}{2} Kx^2 = 0 - 0.\]
Simplifying:
\[250 - 25x - 50x^2 = 0.\]
Rewriting:
\[2x^2 + x - 10 = 0.\]
Solving this quadratic equation gives:
\[x = 2.\]
Thus, the maximum compression in the spring is \(x = 2\) m.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
