The volume of 1000 small drops is equal to the volume of the big drop:
\[ 1000 \times \frac{4}{3}\pi r^3 = \frac{4}{3}\pi R^3 \]
\[ R = 10r \]
The surface energy (S.E.) of the 1000 drops is:
\[ \text{S.E. of 1000 drops} = 1000 \times (4\pi r^2)T \]
The surface energy of the big drop is:
\[ \text{S.E. of Big drop} = 4\pi R^2T \]
Substituting \( R = 10r \):
\[ \text{S.E. of Big drop} = 4\pi (10r)^2T = 400\pi r^2T \]
The ratio of the surface energy is:
\[ \frac{\text{S.E. of 1000 drops}}{\text{S.E. of Big drop}} = \frac{1000 \cdot 4\pi r^2T}{4\pi (10r)^2T} \]
\[ \frac{\text{S.E. of 1000 drops}}{\text{S.E. of Big drop}} = \frac{1000}{100} = \frac{10}{x} \]
\[ x = 1 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: