The volume of 1000 small drops is equal to the volume of the big drop:
\[ 1000 \times \frac{4}{3}\pi r^3 = \frac{4}{3}\pi R^3 \]
\[ R = 10r \]
The surface energy (S.E.) of the 1000 drops is:
\[ \text{S.E. of 1000 drops} = 1000 \times (4\pi r^2)T \]
The surface energy of the big drop is:
\[ \text{S.E. of Big drop} = 4\pi R^2T \]
Substituting \( R = 10r \):
\[ \text{S.E. of Big drop} = 4\pi (10r)^2T = 400\pi r^2T \]
The ratio of the surface energy is:
\[ \frac{\text{S.E. of 1000 drops}}{\text{S.E. of Big drop}} = \frac{1000 \cdot 4\pi r^2T}{4\pi (10r)^2T} \]
\[ \frac{\text{S.E. of 1000 drops}}{\text{S.E. of Big drop}} = \frac{1000}{100} = \frac{10}{x} \]
\[ x = 1 \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).