Step 1: Assign probabilities
Let \( P(3) = P(5) = p \), so \( P(2) = P(4) = P(6) = 2p \).
As the total probability is 1: \[ P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \implies 9p = 1 \implies p = \frac{1}{9} \] Thus, \( P(6) = 2p = \frac{2}{9} \), and \( P(\text{Not getting six}) = 1 - P(6) = \frac{7}{9} \).
Step 2: Define the random variable \( X \)
Let \( X \) represent the number of sixes. The possible values of \( X \) are \( 0, 1, 2 \).
Step 3: Compute probabilities for \( X \)
\[ P(X = 0) = \left( \frac{7}{9} \right)^2 = \frac{49}{81}, \quad P(X = 1) = 2 \cdot \frac{2}{9} \cdot \frac{7}{9} = \frac{28}{81}, \quad P(X = 2) = \left( \frac{2}{9} \right)^2 = \frac{4}{81} \]
Step 4: Probability distribution of \( X \)
Step 5: Compute the mean of \( X \)
The mean is given by: \[ \mu = \sum_{i=1}^{3} X_i \cdot P(X_i) = 0 \cdot \frac{49}{81} + 1 \cdot \frac{28}{81} + 2 \cdot \frac{4}{81} = \frac{28}{81} + \frac{8}{81} = \frac{36}{81} = \frac{4}{9} \]
Step 6: Final result
The probability distribution of \( X \) is:
The mean of the distribution is \( \frac{4}{9} \).
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below:
X | 3 | 4 | 5 |
---|---|---|---|
P(X) | 0.5 | 0.2 | 0.3 |
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: