Step 1: Assign probabilities
Let \( P(3) = P(5) = p \), so \( P(2) = P(4) = P(6) = 2p \).
As the total probability is 1: \[ P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \implies 9p = 1 \implies p = \frac{1}{9} \] Thus, \( P(6) = 2p = \frac{2}{9} \), and \( P(\text{Not getting six}) = 1 - P(6) = \frac{7}{9} \).
Step 2: Define the random variable \( X \)
Let \( X \) represent the number of sixes. The possible values of \( X \) are \( 0, 1, 2 \).
Step 3: Compute probabilities for \( X \)
\[ P(X = 0) = \left( \frac{7}{9} \right)^2 = \frac{49}{81}, \quad P(X = 1) = 2 \cdot \frac{2}{9} \cdot \frac{7}{9} = \frac{28}{81}, \quad P(X = 2) = \left( \frac{2}{9} \right)^2 = \frac{4}{81} \]
Step 4: Probability distribution of \( X \)
Step 5: Compute the mean of \( X \)
The mean is given by: \[ \mu = \sum_{i=1}^{3} X_i \cdot P(X_i) = 0 \cdot \frac{49}{81} + 1 \cdot \frac{28}{81} + 2 \cdot \frac{4}{81} = \frac{28}{81} + \frac{8}{81} = \frac{36}{81} = \frac{4}{9} \]
Step 6: Final result
The probability distribution of \( X \) is:
The mean of the distribution is \( \frac{4}{9} \).
Self-study helps students to build confidence in learning. It boosts the self-esteem of the learners. Recent surveys suggested that close to 50% learners were self-taught using internet resources and upskilled themselves. A student may spend 1 hour to 6 hours in a day upskilling self. The probability distribution of the number of hours spent by a student is given below:
\[ P(X = x) = \begin{cases} kx^2 & {for } x = 1, 2, 3, \\ 2kx & {for } x = 4, 5, 6, \\ 0 & {otherwise}. \end{cases} \]
Based on the above information, answer the following:
Self-study helps students to build confidence in learning. It boosts the self-esteem of the learners. Recent surveys suggested that close to 50% of learners were self-taught using internet resources and upskilled themselves.
A student may spend 1 hour to 6 hours in a day in upskilling self. The probability distribution of the number of hours spent by a student is given below:
\[ P(X = x) = \begin{cases} kx^2, & \text{for } x = 1, 2, 3, \\ 2kx, & \text{for } x = 4, 5, 6, \\ 0, & \text{otherwise.} \end{cases} \]
where \( x \) denotes the number of hours. Based on the above information, answer the following questions:
(i) Express the probability distribution given above in the form of a probability distribution table.
(ii) Find the value of \( k \).
(iii)(a) Find the mean number of hours spent by the student.
(iii)(b) Find \( P(1 < X < 6) \).
A bacteria sample of a certain number of bacteria is observed to grow exponentially in a given amount of time. Using the exponential growth model, the rate of growth of this sample of bacteria is calculated. The differential equation representing the growth is:
\[ \frac{dP}{dt} = kP, \] where \( P \) is the bacterial population.
Based on this, answer the following:
A scholarship is a sum of money provided to a student to help him or her pay for education. Some students are granted scholarships based on their academic achievements, while others are rewarded based on their financial needs.
Every year a school offers scholarships to girl children and meritorious achievers based on certain criteria. In the session 2022–23, the school offered monthly scholarships of ₹3,000 each to some girl students and ₹4,000 each to meritorious achievers in academics as well as sports.
In all, 50 students were given the scholarships, and the monthly expenditure incurred by the school on scholarships was ₹1,80,000.
Based on the above information, answer the following questions: