For Particle to be in equilibrium,
\(mg\,sin \theta = mx\,\omega^2cos\theta\)
⇒ \(tan \theta =\frac{\omega^2x}g\)
Also, \(y=4 c x^{2}\)
⇒ \(\frac{dy}{dx} = 8cx =\) Slope at point P = \(tan \theta\)
Equating both values of \(tan\theta\) we get,
\(\frac{\omega^2x}g = 8cx\)
⇒ \(\omega^2 = 8cg\)
⇒ \(\omega = \sqrt{8cg} = 2\sqrt{2cg}\)
Therefore, The correct option is (B): \(2\sqrt{2cg}\)
A string of length \( L \) is fixed at one end and carries a mass of \( M \) at the other end. The mass makes \( \frac{3}{\pi} \) rotations per second about the vertical axis passing through the end of the string as shown. The tension in the string is ________________ ML.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $