For Particle to be in equilibrium,
\(mg\,sin \theta = mx\,\omega^2cos\theta\)
⇒ \(tan \theta =\frac{\omega^2x}g\)
Also, \(y=4 c x^{2}\)
⇒ \(\frac{dy}{dx} = 8cx =\) Slope at point P = \(tan \theta\)
Equating both values of \(tan\theta\) we get,
\(\frac{\omega^2x}g = 8cx\)
⇒ \(\omega^2 = 8cg\)
⇒ \(\omega = \sqrt{8cg} = 2\sqrt{2cg}\)
Therefore, The correct option is (B): \(2\sqrt{2cg}\)