Step 1: Determine Horizontal Range to Just Hit Step 5:
- The ball needs to cross 4 steps horizontally to just hit the 5th step. Since each step is 0.1 m wide, the horizontal range \( R \) required to reach the 5th step is:
\[ R = 0.4 \text{ m} \]
- Using the horizontal motion equation \( R = u \cdot t \), we get:
\[ t = \frac{R}{u} = \frac{0.4}{u} \]
Step 2: Vertical Motion Analysis:
- For vertical displacement, the ball needs to fall a height of \( h = 4 \times 0.1 = 0.4 \text{ m} \). Using the vertical motion equation \( h = \frac{1}{2} g t^2 \):
\[ 0.4 = \frac{1}{2} \cdot 10 \cdot \left( \frac{0.4}{u} \right)^2 \]
- Simplify to find \( u \):
\[ 0.4 = 5 \cdot \frac{0.16}{u^2} \]
\[ u^2 = 2 \]
\[ u = \sqrt{2} \text{ m/s} \]
Step 3: Determine \( x \):
- Given that \( u = \sqrt{x} \), we find \( x = 2 \).
So, the correct answer is: \(x = 2\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: