\(\frac{3}{4}t^4−t^2+10t\)
\(\frac{t_4}{2}−\frac{t_3}{3}+10t+4\)
\(\frac{2t^4}{3}−\frac{t^3}{6}+10t+12\)
\(2t^4−\frac{t^3}{2}+5t+4\)
The correct answer is (B) : \(\frac{t_4}{2}−\frac{t_3}{3}+10t+4\)
\(α=\frac{d\omega}{dt}=6t^2−2t\)
\(∫_{0}^{\omega} d\omega=∫_{0}^{t}(6t^2−2t)dt\)
so ω = 2t3 – t2 + 10
and
\(\frac{dθ}{dt}=2t^3−t^2+10\)
so
\(∫_{4}^{θ}dθ=∫_{0}^{t}(2t^3−t^2+10)dt\)
\(θ=\frac{t_4}{2}-\frac{t^3}{3}+10t+4\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: